
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Produktentwicklung

Object-Oriented Graph Grammars
for Computational Design Synthesis

Bergen Helms

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. rer. nat. Dr. h.c. Ulrich Walter
Prüfer der Dissertation: 1. Univ.-Prof. Kristina Shea, Ph.D., Eidgenössische

Technische Hochschule Zürich, Schweiz
2. Univ.-Prof. Dr.-Ing. Martin Eigner, Technische

Universität Kaiserlsautern
3. Univ.-Prof. Dr.-Ing. Udo Lindemann

Die Dissertation wurde am 20.09.2012 bei der Technischen Universität München
eingereicht und durch die Fakultät für Maschinenwesen

am 06.02.2013 angenommen.

Abstract

Conceptual design is an early design phase that is acknowledged as particularly critical. Its goal is the
determination of the product’s essential characteristics that meet the given requirements. Conceptual
design is characterized by high uncertainty resulting from lacking knowledge about the future prod-
uct that makes it difficult to evaluate design quality and to systematically explore the set of solutions.
Computational Design Synthesis (CDS) aims at supporting conceptual design through formalization and
automation of knowledge-intensive design tasks. However, CDS still has little acceptance in industry due
to the high effort required for knowledge and task formalization, the limited scope of application, the lack
of reuse of existing paper-based design knowledge, the lack of modeling standards and tool integration,
and the low maturity of software tools. The potential of CDS to increase development efficiency and
innovative power motivates addressing these problems. This thesis contributes to the goal of increasing
the applicability of CDS in every day design practice with the development and implementation of a hy-
brid knowledge representation, termed object-oriented graph grammar, and an approach to automatically
formalize engineering knowledge from design catalogs.

Object-oriented graph grammars enable the computational synthesis of product architectures on multi-
ple levels of abstraction, i. e. Function, Behavior and Structure. This hybrid knowledge representation
allows to capture declarative knowledge in a port-based metamodel and to formulate generic, procedural
design rules in a graph grammar. The object-oriented graph grammar approach is implemented in the
modular, open-source and platform-independent software booggie. A formal language definition repre-
sents the foundation for tool integration through model transformation. A complementary approach is
developed to characterize and formalize physical effects contained in design catalogs. Through an auto-
mated analysis of the equation structure, abstraction ports are assigned to physical effects and represent
valid mappings between functions and physical effects.

Through the hybrid knowledge representation of object-oriented graph grammars, advances in terms of
efficiency and effectiveness of the knowledge formalization are achieved. These contributions are vali-
dated through the synthesis of a solution space of automotive hybrid powertrains. The impact of evolv-
ing engineering knowledge on the solution space is shown and noteable solutions are identified through
the search for specific solution characteristics. The computational generation of aircraft cabin layouts
validates the practical usability of object-oriented graph grammars as implemented in booggie in an in-
dustrial case study. The automated, equation-based formalization of physical effects makes paper-based
engineering knowledge available for CDS. The advantage to computationally reusing this knowledge is
validated with the formalization of the physical effects of two design catalogs and a separate software
prototype that searches suitable physical effects for a given function.

The contributions achieved in this work support the efforts to bring CDS approaches into use in every
day design practice. Besides an increase of the software maturity, future work should include the in-
tegration of object-oriented graph grammars and the automated assignment of abstraction ports in one
implementation. The extension of the synthesis of product architectures towards parametric synthesis
and design evaluation using simulation should be addressed as well. Further, the incorporation of logical
reasoners could enable the solution of logical port-matching problems and using model transformation,
the transformation to other modeling languages, e. g. SysML, could be realized.

Acknowledgments

This work results from my occupation as a researcher in the Virtual Product Development Group at the
Institute of Product Development at the Technische Universität München from July 2007 to June 2012.

Firstly, I would like to thank my doctoral advisor Prof. Kristina Shea for her intense support of my
research and confidence in my work. This work would not have been possible without our numerous,
valuable – sometimes very demanding – research meetings. Particularly our three-day finalization session
was highly valuable for the compilation of this thesis.

I want to thank Prof. Martin Eigner for his contribution as second advisor. I always enjoyed the scientific
discussions with him and his group members. I also want to thank Prof. Ulrich Walter who graciously
accepted to act as chairman of the examination board on short notice.

My gratitude also goes to my third advisor, Prof. Udo Lindemann, for the trust he placed in my work and
for offering me a productive and pleasant working environment at the Institute of Product Development.
I always felt part of the overall institute and enjoyed the opportunity to gain many deep insights into
design research.

I would also like to extend my gratitude to all of my colleagues at the Institute of Product Development
for making my research life not only a fruitful but also a humorous, inspiring and perspective broadening
venture. In particular, the deep discussions, collegial cooperation and unforgettable moments with Dr.
David Hellenbrand, Dr. Clemens Hepperle, Arne Herberg, Dr. Frank Hoisl, Stefan Langer, Torsten
Metzler and Clemens Münzer made it a pleasure for me to face the academic challenges and to see the
humor in the everyday absurdities of research life. Dr. Markus Mörtl greatly helped to cope with the
daily bureaucratic hurdles. I would also like to thank Karim Bin-Humam and Dr. Iestyn Jowers who
helped me with the pitfalls of the English language. I owe a mille grazie to il mio padrino Dr. Markus
Petermann and la mia figlioccia Katharina Helten: "Ihr seid’s just leiwand!"

A special thanks goes to Prof. Chris Paredis at the Georgia Institute of Technology who made it possible
for me to spend four memorable months in Atlanta. I would also like to thank Sebastian Herzig, Ben
Lee, Jiten Patel and Dr. Axel Reichwein for their hospitality, the many joint activities and for making my
adventure in the USA special in so many ways.

In addition, I would like to thank all my students who helped me in developing my ideas further, trying
out new concepts and developing the software booggie. Particularly, I must thank Karim Bin-Humam,
Philip Daubmeier, Oleksandr Golovatenko, Peter Grüner, Thomas Hentschel, Franziskus Karsunke,
Philip Lorenz, Ferdinand Mayet, Clemens Münzer and Hansjörg Schultheiß.

Special thanks goes to my girlfriend Ina who was patient and compassionate in the most trying times of
my thesis writing. She was a great discussion partner in difficult moments and motivated me to finalize
the thesis writing in a reasonable time frame.

Finally, I am very grateful to my parents and my sister. Their unwavering belief in my abilities and their
multifaceted support empowered me to successfully carry out this work.

Garching, March 2013 Bergen Helms

The following publications are part of the work presented in this thesis:

Helms, B.; Shea, K.; Hoisl, F.: A Framework for Computational Design Synthesis Based on Graph-
Grammars and Function-Behavior-Structure. In: ASME 2009 International Design Engineering Tech-
nical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2009, pp.
841–851. San Diego, USA 2009.

Helms, B.; Shea, K.: Object-Oriented Concepts for Computational Design Synthesis. In: 11th Interna-
tional Design Conference, DESIGN 2010. Dubrovnik, Croatia 2010.

Helms, B.; Schultheiß, H.; Shea, K.: Automated Assignment of Physical Effects to Functions Using
Ports Based on Bond Graphs. In: ASME 2011 International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference, IDETC/CIE 2011. Washington DC, USA.

Helms, B.; Shea, K.: Computational Synthesis of Product Architectures Based on Object-Oriented Graph
Grammars. Journal of Mechanical Design 134 (2012) 2, pp. 021008-1 – 021008-14. ISSN: 10500472.

Contents

1 Introduction 1
1.1 Motivation and problem description . 3
1.2 Objectives and expected contributions . 6
1.3 Thesis structure . 10

2 Computational design synthesis for supporting conceptual design 13
2.1 The importance of representation for CDS . 14
2.2 Overview of design representations . 16

2.2.1 Function . 19
2.2.2 Behavior . 23
2.2.3 Structure . 24
2.2.4 Reflections on design representations . 25

2.3 Overview of knowledge representations . 26
2.3.1 Rule-based knowledge representation . 26
2.3.2 Model-based knowledge representations . 29
2.3.3 Case-based knowledge representation . 37
2.3.4 Reflections on knowledge representations . 39

2.4 Related work . 39
2.4.1 Rule-based CDS approaches . 40
2.4.2 Model-based CDS approaches . 44

2.5 Conclusions . 47

3 Synthesis of product architectures using object-oriented graph grammars 53
3.1 Design representation: Function-Behavior-Structure . 53
3.2 Knowledge representation: Object-oriented graph grammars 55

3.2.1 Grammar definition . 56
3.2.2 Grammar application . 62

3.3 Validation: Synthesis of hybrid powertrains . 65
3.3.1 Grammar definition . 66
3.3.2 Grammar application and discussion of the synthesis results 67

3.4 Discussion . 74

4 Automated allocation of physical effects to functions using abstraction ports 77
4.1 Method context . 78
4.2 Bond graph elements – the foundation for abstraction port types 79
4.3 Assignment of abstraction ports to functions . 81
4.4 Assignment of abstraction ports to physical effects . 82

4.4.1 General approach . 82
4.4.2 Special case 1: Modulated elements . 84
4.4.3 Special case 2: Combined elements . 84

4.5 Validation: Formalization of design catalogs . 86
4.5.1 Assignment of physical effects to bond graph elements 87
4.5.2 Search for suitable physical effects for allocation to functions 88

4.6 Discussion . 88

5 Development of the software prototype booggie 93
5.1 Software requirements . 93

5.1.1 Functional requirements . 93
5.1.2 Non-functional requirements . 95

5.2 Formal definition of the booggie modeling language (bgML) 95
5.2.1 booggie graph (M1) . 96
5.2.2 booggie metamodel (M2) . 98
5.2.3 booggie metamodel specification (M3) . 99

5.3 Software architecture . 100
5.4 Implementation of selected (sub-)components . 101

5.4.1 Metamodel perspective . 102
5.4.2 Rules perspective . 102
5.4.3 Rule Sequences perspective . 104
5.4.4 Graph visualization . 106
5.4.5 Graph Transformation perspective . 107

5.5 Validation: Synthesis of aircraft cabin layouts . 110
5.5.1 Structure of aircraft cabins and definition of the metamodel 112
5.5.2 Definition of rules, scipts and the rule sequence . 114
5.5.3 Grammar application and discussion of the synthesis results 119

5.6 Discussion . 123

6 Discussion and future work 127
6.1 Research contributions . 127
6.2 Future work . 129

7 Conclusion 133

8 References 135

9 Appendix 153
9.1 Illustrative example for constraint-based representations 153
9.2 Illustrative example for description logics . 156
9.3 Functional Basis . 158
9.4 Software architecture . 160

9.4.1 Model . 160
9.4.2 View . 161
9.4.3 Controller . 162
9.4.4 Plugin architecture . 163

9.5 Notation for the definition of the booggie modeling language (bgML) 165
9.6 Final assessment of the cabin configurator project by EADS 166

Index 169

1 Introduction

The development of products is an iterative decision-making process aimed at creating an artifact that
satisfies a customer need. Typically, product development processes start with the identification of a need
that is analyzed, clarified and expressed as a design problem and pass through several phases. In these
phases tasks are carried out that either focus on gaining insights about the nature of the design problem
or on synthesizing (sub-)solutions to solve design (sub-)problems. The goal is a detailed description of a
product such that it can be manufactured according to the customer needs.

The established engineering design1 literature (Eder& Hosnedl, 2008; Ehrlenspiel, 2009; French, 1999;
Pahl et al., 2007; VDI, 1987) divides the product development process into the four phases depicted in
Figure 1-1.

Feedback

Task

clarification

Conceptional

design

Emdodiment

design

Detail

design

Statement of

design problem

Principle

solution

Customer

needs

Working

drawings, etc.

1

2

3

4

Preliminary

layout

Figure 1-1: Phases of the engineering design process, adapted from (French, 1999, p. 2)

The task clarification phase is targeted at gaining clarity about customer needs and transforming them
into a structured formulation of a design problem expressed as a set of requirements. It comprises
two tasks: problem analysis and problem definition. The former aims to obtain information about the
customer needs, hence identifying further requirements, details of the constraints and possible methods
for successfully executing the design tasks (VDI, 1987). In the subsequent problem definition the design
problem is expressed in the language of the problem solver, typically a designer or engineer, ideally
without being biased by a previous solution or having a specific solution in mind.

1In the context of this work, the terms product development and engineering design are used synonymously.

2 1 Introduction

Based on the problem statement, the conceptual design phase transforms this statement into a solution
concept. This is achieved by iteratively specifying the product architecture2 on various levels of abstrac-
tion. Pahl et al. (2007) call the outcome of this phase a principle solution. In the embodiment design
phase designers define the preliminary construction layout that most often involves the creation of "ar-
rangement drawings" (French, 1999, p. 3), commonly also termed as preliminary layout. Finally, within
the detail design phase, the final product parameters are defined. In the engineering design domain this
involves primarily the definition of the product geometry and the final definition of the product proper-
ties that determine the required product behavior. As these phases influence each other in a non-serial
manner, interdependencies between working steps and results arise. Hence, they are not to be seen as
isolated working steps, but rather as steps through which the designer proceeds iteratively, as depicted in
Figure 1-1.

The importance of task clarification has been acknowledged and led to the establishment of a separate
discipline: requirements engineering. Typical tasks in requirements engineering comprise the identifi-
cation of stakeholders, gaining an understanding of the customer needs and the identification, analysis,
prioritization, tracking and validation of requirements (Young, 2003).

Among the remaining three design phases, the conceptual design phase is acknowledged as particularly
critical. It offers the greatest scope for significant enhancements (French, 1999, p. 3) and decisions made
in this phase impact all subsequent design phases (Chakrabarti & Bligh, 1994). The wide scope of
design options poses significant challenges for designers because it is here where "engineering science,
practical knowledge, production methods, and commercial aspects need to be brought together, and
where the most important decisions are taken" (French, 1999, p. 3). The result of the conceptual phase,
the principal solution, has a major impact on the costs of the entire product life cycle as it significantly
determines the product’s essential characteristics. Hence, a major portion of the total costs are defined
here while the actual cost occurrence are still low at this early phase (Ehrlenspiel et al., 2007, p. 166),
as shown in Figure 1-2.

high

low

Conceptual

design

Embodiment

design

Detail

design
Manufacturing Usage Disposal

Cumulated

costs occurence

Possibility to

influence costs

Figure 1-2: Possibility to influence costs vs. cumulated cost occurrence during the product life cycle,
adapted from (Ehrlenspiel et al., 2007, p. 11)

The conceptual design phase is characterized by high uncertainty resulting from vague, preliminary in-
formation and knowledge about the potential product in question. Hence, decisions having a substantial

2For a discussion of definitions of the term product architecture, refer to Section 2.2.4.

1.1 Motivation and problem description 3

influence on phases further downstream in the development process are in turn influenced by this uncer-
tainty and risk (Ponn & Lindemann, 2011, p. 293). This lack of knowledge makes it difficult to evaluate
design quality and to assess the implications of these decisions. It is not without reason that this early
phase is often referred to as the "fuzzy front end" (Cagan & Vogel, 2001, p. 3).

Designers often do not consider and investigate a wide range of solutions for the given design problem.
Besides lack of knowledge, reasons include a bias to previous solutions or just the impossibility of iterat-
ing manually through multiple alternative solutions within a reasonable amount of time (Chakrabarti &
Bligh, 1994). External factors also exist, such as the competitive pressure in global markets. Designers
constantly have to increase their development efficiency and effectiveness.

There is consensus in the engineering design literature that the results of the conceptual design phase,
and, consequently, the quality of the product to be developed, particularly profit from a systematic ap-
proach (Ehrlenspiel, 2009; French, 1999; Koller, 1994; Pahl et al., 2007; Ulrich & Eppinger, 2008).
Chakrabarti & Bligh (1994) state that such a systematic procedure should incorporate a solution-
independent description of the design task, a solution synthesis that is not biased towards previous and
alternative solutions and an assessment of solution alternatives that is based on objective evaluation cri-
teria.

The later design phases already strongly benefit from computational support. For example, computer-
aided design tools are widely used in everyday engineering practice. The same is true for a wide range of
simulation tools that are available for specific domains, e. g. in structural mechanics or fluid dynamics.
In contrast, computational applications for supporting engineering design in the conceptual phase are
primarily based on spreadsheet applications and simple modeling tools that create images rather than
reusable, formal3 models. Eigner et al. (2012) state that there is a lack of cross-disciplinary IT-support
for system modeling in the conceptual design phase and emphasize the great need for research in that
field. Research efforts in this direction with the goal of automating design tasks are subsumed under the
field of research termed as Computational Design Synthesis (CDS). The focus of research in this area is
typically on specific aspects rather than general approaches for the synthesis of creative solution concepts
(Antonsson & Cagan, 2001a; Chakrabarti et al., 2011). However, CDS research provides a variety of
promising answers to prevailing problems of the conceptual design phase, such as uncertainty and lack
of knowledge. This potential is motivation for the research that is presented in this thesis.

1.1 Motivation and problem description

Due to the nature of the challenges facing product developers in the conceptual phase, e. g. the fuzzy
front end and increasing competition, approaches from the research field of Computational Design Syn-
thesis (CDS) offer promising opportunities. A goal of CDS is to iteratively and (semi-)automatically
generate a range of solutions for given design tasks. Formal methods for computational design synthesis
assist designers in developing better products faster, through rapid generation of spaces of feasible, op-
timized, and if appropriate, simulation-driven designs. CDS supports the creative step in the conception
of products (Antonsson & Cagan, 2001b). Cagan et al. (2005) state that CDS is ideally "invoked in sit-
uations in which the human designers are often at a loss of what avenues to pursue, or the best method of
achieving a solution requires the generation and evaluation of countless alternatives". Synonymously to

3Within the scope of this thesis, the definition of a formal model is used in accordance with the VDI guideline 3681 (VDI,
2005): A "Formal description method has a mathematical basis and a completely defined syntax as well as a clear semantic
interpretation."

4 1 Introduction

Computational Design Synthesis the term Formal Engineering Design Synthesis (Antonsson & Cagan,
2001b) is also used.

According to Chakrabarti et al. (2011), the importance and relevance of CDS for the conceptual de-
sign phase is established in two ways: First, computational approaches support the investigation of new
directions in the design process as they are not biased by previous solutions and can potentially generate
and evaluate a high number of solutions. Second, due to the possibility to automate design tasks, compu-
tational approaches can decrease the tedium in routine design tasks. Through that automation, the error
rate can be reduced and more time is left for the designer to attend to creative tasks.

One can then conclude that CDS methods are a promising approach to address the described challenges
of the conceptual design phase. Also from a more general and strategic perspective, the benefits of CDS
offer the potential to increase the innovative capacity of manufacturing companies. This is the key point
for securing their future viability in the context of an increasingly global competitive pressure (Cooper
& Edgett, 2005, p. 3) and, consequently, to develop better products faster. The application of CDS
approaches can contribute to an improvement of development efficiency leading to an acceleration of
the development process. In terms of development effectiveness, an increase of the innovative capacity
results in the development of better products. These are the essential aspects for securing success in
the marketplace (Spath, 2001). Another challenge is the increase of reactivity in the product develop-
ment process. Given its high susceptibility to cyclic influences, such as modified customer requirements
(Berkovich et al., 2009), changes in laws (Langer & Lindemann, 2009) and evolving knowledge, e. g.
due to new technologies (Helms & Shea, 2012), the ability to flexibly react to such influences is consid-
ered highly valuable (Christensen, 2006). Computational support, especially in the conceptual design
phase, can address this point by enabling the quick generation and adaptation of designs.

Based on statements stemming from research and academia, it can be said that the promises of CDS
address essential challenges in the conceptual design phase that are considered crucial for the develop-
ment of competitive products. From an industrial perspective, the barrier that may prevent manufacturing
companies from investing in CDS should be significantly low when considering the notably large chal-
lenge of constantly raising innovative capacity. This presumption is substantiated by market researchers
(Infiniti Research, 2011) who state that with increasing market competition the need for design and anal-
ysis software that assures product reliability, durability and quality is also increasing. Companies have
to accelerate the design process to launch new products, with fewer physical prototypes and at lower
costs.

Naturally, the question arises why the promising application of CDS research is not widespread in the
industrial context or, more generally speaking, why everyday engineering design is not widely supported
by applications of CDS research. In the remainder of this section, research issues are formulated and
illustrated addressing the principal reasons for the weak dissemination of CDS approaches. The preced-
ing depiction of the potential added value of CDS application motivates to face these research issues and
leads to the formulation of research goals in the following section.

Research Issue 1. Inefficiency of knowledge formalization

It is common for CDS approaches to build on rule-based knowledge formalization. This means that the
complexity of the design problem and the scope of application have a direct impact on the size of the rule
set. For example, for transforming a function-based product description into a component-based prod-
uct description, Sridharan & Campbell (2004) manually defined 69 rules and Kurtoglu et al. (2010)

1.1 Motivation and problem description 5

derived a set of 170 rules from a repository of designs. The formulation of these design rules is time
consuming and often involves the integration of expert knowledge, which can become a substantial cost
factor. Further, large rule sets raise issues in terms of keeping the knowledge base consistent and avoid-
ing contradictions between rules. When using CDS to automatically generate design candidates, often
the design problem itself and the knowledge of how to tackle the design problem change due to various
influences, such as modified requirements, changes in laws and evolving knowledge about technologies.
The inflexibility of knowledge bases induces a considerable effort to keep the knowledge base up to date
and might even require fundamental changes in the structure of the knowledge. Knowledge bases are
often conceptualized as closed, monolithic repositories. As a result, a modularization of the knowledge
base to promote reuse of formal knowledge is not supported (Tomiyama et al., 1989).

Another issue that falls under this category is the lack of systematic support for the process of knowledge
formalization (Chakrabarti et al., 2011; McKay et al., 2012). In general, the existence of formalized
knowledge is assumed. Hence, static knowledge is captured up-front while the method and tool is under
development. Where that knowledge comes from and how users of CDS approaches could modify,
extend or even create formal knowledge bases is often not considered. The research field of knowledge
engineering focuses on methods for integrating knowledge into computer systems. The application of
research results from this field, as for example developed within the EU project MOKA4 (Stokes &
MOKA Consortium, 2001) could ease the time-consuming process of knowledge formalization. The
problems of effort-intensive knowledge formalization, inflexibility and lack of support for systematic
formalization pose a high barrier for applying results of CDS research in everyday engineering practice
in both academia and industry. This is especially insufficient due to the temporal nature and connectivity
of distributed knowledge throughout different engineering domains and company divisions.

Research Issue 2. Limited scope of application of CDS approaches

Several methods for formal, computational design synthesis have been successfully developed during the
last few decades (Antonsson & Cagan, 2001b; Chakrabarti, 2002; Chakrabarti et al., 2011). How-
ever, most approaches are often limited to a narrow engineering viewpoint of a synthesis task. Although
general design methods and procedures are well established in academia and industry (Eder & Hosnedl,
2008; Ehrlenspiel, 2009; Koller, 1994; Pahl et al., 2007; Ulrich & Eppinger, 2008), domain indepen-
dent computational implementations for design synthesis are rare (Erden et al., 2008). Nevertheless,
they have been in demand since 1987 as described in the VDI guideline 2221 (Systematic Approach to
the Development and Design of Technical Systems and Products) issued by the Association of German
Engineers (VDI, 1987). The trend towards mechatronic products, composed of mechanics, electronics
and software, and towards product service systems, additionally composed of service aspects, underlines
the need for general, computational synthesis methods. However, existing solutions are not multidisci-
plinary, not applicable in the early conceptual design phase and not sufficiently intelligent (Eigner et al.,
2012).

Another aspect is that design methods supporting the creation of innovative solutions typically transform
product models from a solution-neutral design representation, e. g. a function structure, into a concrete
design representation, e. g. a component structure. Hence, multiple levels of abstraction are required,
as further elaborated in Section 2.2. Complexity is thus induced into the synthesis process as modeling
elements on multiple levels of abstraction have to be considered along with their various relations.

Research Issue 3. Lack of reuse of existing, paper-based design knowledge and methods
4Methodology and tools Oriented to Knowledge based Applications

6 1 Introduction

Paper-based design methods take advantage of vast amounts of previously documented knowledge in
the form of design catalogs. For example, when seeking physical effects to fulfill a certain function,
the catalogs of elementary physical effects provided in paper-based design catalogs are of great value
(Koller & Kastrup, 1998; Roth, 2001; Ponn & Lindemann, 2011). Further, various design methods,
such as functional modeling (Pahl et al., 2007), are widely taught in the academic engineering design
education and should represent a common practice of how to proceed when tackling design tasks. Use of
these knowledge sources and approaches to align the computational design process towards the human,
i. e. paper-based, design process does not prevail in CDS applications. This leads to the necessity to
formalize the knowledge from first principles instead of reusing knowledge. This increases the effort
required for establishing CDS systems. Often, it is difficult for the user of CDS systems to understand
the problem solving process and to be able to assess solution quality and validity. This is due to the fact
that CDS approaches in many cases differ significantly from the known paper-based method. Hence, an
intuitive comprehensibility of the computationally realized synthesis process is not given.

Research Issue 4. Lack of modeling standards and tool integration

The assessment of designs that are computationally synthesized often involves the integration of special-
ized tools, e. g. for simulating the design’s physical behavior. Especially with regards to the development
of complex products, this often requires the simulation of systems in multiple engineering domains. Re-
search efforts are being made to support multidisciplinary modeling and exchange of models among
disciplines and tools. This has led to the development of general, standardized modeling languages, such
as SysML. These modeling languages increasingly gain significance, especially in the industrial context.
However, only few CDS approaches are based on these and benefit from their advantages.

While there are numerous CDS approaches that integrate specific simulation tools, there still exists the
need for general approaches for interfacing with other tools and to describe synthesized designs in a
standard format. These issues lead to the difficulty to integrate synthesis approaches in tool chains and
development processes, particularly when it comes to design problems that span multiple engineering
domains. A CDS approach typically represents a special solution instead of a building block in the
broader development process.

Research Issue 5. Low maturity of software tools

The goal of software development within CDS research is typically not the development of mature soft-
ware for industrial application but the validation and illustration of synthesis methods based on software
prototypes. This is primarily justified by the fact that elaborate software engineering is not within the
scope of CDS research. It can be observed that in publications in this research field the development of
software is not considered a key contribution. It is more the case that software prototypes are seen as
enablers to show strengths and weaknesses of the actual synthesis methods. The immaturity of CDS soft-
ware is – from a scientific perspective – comprehensible. However, this issue hinders the expansion of
CDS into an industrial application context. It also restricts the exchange of CDS tools among researchers
and obstructs research towards a common software platform for CDS.

1.2 Objectives and expected contributions

Chakrabarti et al. (2011) recently stated that the CDS research community at large strives to push CDS
approaches toward "use in everyday design practice". The superordinate objective of this thesis is to
contribute to this effort. However, tackling this objective in its entirety presents a scope far too extensive

1.2 Objectives and expected contributions 7

for this thesis. Emphasis is put here on the advancement of computational support for the conceptual
phase and this work specifically targets an enhancement of the representation foundation for CDS; the
particular importance of representation for CDS is discussed in Section 2.1.

The conceptual design phase is a decisive part of the design process during which new product con-
cepts and innovations are envisioned and transformed into physical configurations that meet the design
requirements. The objective of enhancing computational support for this phase implies the following
assumptions:

∙ In such an early phase of the engineering design process, geometry plays a minor role. Instead, the
composition of the design, e. g. in terms of its function or component structure, is the focal point.
Such product descriptions are termed product architectures and build on design representations
that are introduced in Section 2.2. Graphs are a natural means to describe product architecture and
are computationally well supported.

∙ Paper-based methods for conceptual design, such as functional modeling, concentrate on the com-
position of modeling elements instead of representing their inner workings. This kind of black box
approach is also used here. Where necessary, the black boxes are enriched with parameters that,
in general, exhibit a higher degree of granularity.

A graph-based overview of the scientific reasoning of this thesis is depicted in Figure 1-3.

Research Goal 1

Increase effectiveness

and efficiency of know-

ledge formalization

Research Goal 2

Generation of known

and new solutions

Research Goal 3

Formalization of

existing design

knowledge resources

Research Goal 4

Foundation for model

transformation

Research Goal 5

Mature software as

foundation for future

work

Research Issue 1

Inefficiency of know-

ledge formalization

Research Issue 2

Limited scope of

application

Research Issue 3

Lack of reuse of

design knowledge

Research Issue 4

Lack of modeling

standards and tool

integration

Research Issue 5

Low software

maturity

addressesaddressesaddressesaddressesaddressesaddresses

aims to

achieve

aims to

achieve

aims to

achieve

aims to

achieve

addresses

illustrates

and validates

Expected

Contribution 1

High efficiency of

object-oriented

graph grammars

Expected

Contribution 2

High effectiveness of

object-oriented

graph grammars

Expected

Contribution 3

Formalization of

design catalogs

Expected

Contribution 4

Model transfor-

mation and tool

integration

Expected

Contribution 5

Generation of

human-competitive

solutions

Expected

Contribution 6

Mature software

prototype

aims to

achieve

aims to

achieve

aims to

achieve

Figure 1-3: Overview of the argumentation structure of this thesis

Research Goal 1. Enhancement of knowledge representation to increase effectiveness and efficiency of
knowledge formalization for CDS

The formal representation of knowledge and of the design that is in the process of being synthesized build
the foundation for any CDS approach, which is further elaborated in Section 2.1. This is the main area
of contribution of this research. The assumption is that CDS approaches at large profit from advances in
making representations more effective and more efficient. Efficiency considers the effort that is required

8 1 Introduction

to formalize knowledge and maintain the knowledge base; this addresses Research Issue 1 (inefficiency of
knowledge formalization). Effectiveness, in turn, targets the suitability of the representation to formalize
design problems and appropriate problem solving strategies within the relevant scope of application and
is targeted at Research Issue 2 (limited scope of application).

Research Goal 2. Computational generation of known and new solutions based on the developed knowl-
edge representation

The ultimate goal of formalizing design knowledge is to automate the creation of design candidates.
Typically in the first step, known solutions are generated to validate the computational synthesis pro-
cess. This provides the foundation for expanding towards synthesizing solutions using advanced search
and optimization techniques, which is not within the scope of this thesis. The suitability of the knowl-
edge representation developed in this research to cope with the synthesis of known and new solutions is
demonstrated. To do so, a constrained random-walk search approach is developed. Additionally, it shall
be shown that the developed knowledge representation is generally suited as a foundation for synthesis
approaches that concentrate on more elaborate search and optimization algorithms.

Research Goal 3. Formalization of existing design knowledge resources as input for CDS knowledge
bases

Making knowledge available for CDS approaches that is already expressed in the form of design catalogs,
design methods or guidelines has the potential to increase the efficiency of the knowledge formalization
process and, hence, contributes to addressing Research Issue 1 (inefficiency of knowledge formalization).
However, this goal primarily addresses Research Issue 3 (lack of reuse of design knowledge).

Research Goal 4. Methodological foundation for the transformation between modeling languages

CDS approaches often have to interface with other tools and methods, e. g. for the evaluation of a design
candidate. Beyond considering this primarily as an implementation issue that focuses on the control of
external tools, e. g. for starting a simulation run, specific models have to be generated that contain the
required information. A methodological foundation is needed that captures the knowledge about how
to transfer between model representations. Such a transformation method could also be used to transfer
models to standardized model languages, such as SysML. Thus, this research goal addresses Research
Issue 4 (lack of modeling standards and tool integration).

Research Goal 5. Development of mature, expandable, open-source software that can serve as a foun-
dation for future CDS research

The achievement of the previous research goals requires demonstration based on a software prototype.
This research also aims to contribute to improved dissemination of CDS methods in an industrial con-
text by providing a robust software foundation. To achieve this, mature, existing open-source software
is reused. The focus on a graph-based representation supports a variety of open-source software solu-
tions for the generation, representation, visualization and analysis of graph-based models. This requires
that the software being developed in this research be issued under an open-source license. To enable
future research to be based on this software platform it is important that other researchers can expand
on it with their own pieces of software. Consequently, this research goal addresses Research Issue 5
(low software maturity)). As the software prototype aims to be independent of a specific application
domain, it also addresses the problem of limited scope of application in Research Issue 2 (limited scope
of application).

1.2 Objectives and expected contributions 9

The scientific endeavor to achieve these research goals is based on the hypothesis that a knowledge
representation is required that combines a model-based and a rule-based representation. The choice of
such a hybrid representation is supported with analogies drawn from the development of expert systems
in the area of artificial intelligence, as discussed in Section 2.3 that gives an overview of knowledge
representations.

The envisioned support for the conceptual design phase can be built on the grammar-based synthesis
of graph-based product architectures. However, conventional graph grammar approaches only cover
rule-based knowledge formalization. The expansion towards including model-based aspects is achieved
based on object-oriented modeling techniques. This results in the development of a hybrid knowledge
representation that is termed object-oriented graph grammars.

The following contributions are expected in the scope of this thesis:

Expected Contribution 1. Object-oriented graph grammars are demonstrated to be an efficient knowl-
edge representation approach. This means (1) the knowledge base remains manageable even when
complex model structures are to be generated, (2) the knowledge formalization process is intuitively
understandable, (3) the formalization of evolving knowledge is supported and (4) the computational ef-
ficiency of executing object-oriented graph grammars and, consequently, of the solution generation is
high enough for the realization of elaborate search and optimization algorithms. Further, object-oriented
graph grammars provide the representational foundation to capture the knowledge that is formalized
from paper-based design catalogs.

Expected Contribution 2. Object-oriented graph grammars prove to be a suitable representational
means to effectively capture declarative and procedural knowledge. Thus, knowledge for a wide range
of applications and for multiple levels of abstraction can be formalized in an effective way. Based on this
knowledge representation, the generation of known and new solutions is possible.

Expected Contribution 3. In conceptual design, functions are used to represent abstract product de-
scriptions. During the design process, suitable physical effects are mapped to them. The ability of
physical effects to realize functions is contained within the model-based part of the hybrid knowledge
representation. The knowledge for this mapping is automatically derived from paper-based design cata-
logs.

Expected Contribution 4. The developed knowledge representation supports the formal specification of
modeling languages and execution of rule-based transformations between them. This serves as a strong
basis for the realization of model transformation approaches and interfacing with required tools.

Expected Contribution 5. The expected achievements in terms of efficiency and effectiveness of the
knowledge representation in conjunction with a mature software prototype allows for the generation of
human-competitive solutions, including known and new solutions, for industrial design problems.

Expected Contribution 6. The illustration and validation of the previous expected research contribu-
tions (except Expected Research Contribution 3 (Formalization of design catalogs) that is validated based
on a separate software implementation) results in the development of a software prototype. The integra-
tion of sophisticated open-source libraries and the use of established software development paradigms
lead to a mature, modular and expandable software framework. The software requirements that have to
be met for the illustration and validation purposes are presented in Section 5.1.

10 1 Introduction

1.3 Thesis structure

Figure 1-4 shows the structure of the thesis linking the argumentation structure to the sections.

This work aims to develop computational support for the conceptual design phase. The research issues
presented in this chapter provide the motivation for this project. Chapter 2 aims to support the assump-
tions and research goals presented in the introduction. After a general depiction of Computational De-
sign Synthesis highlighting the importance of representation (Section 2.1), the relevant representational
foundations of the two research areas, artificial intelligence and engineering design, are discussed in Sec-
tion 2.2 and Section 2.3: design representations and knowledge representations. While the former serves
the purpose of introducing the levels of abstraction and deriving requirements for knowledge represen-
tations for CDS, the latter corroborates the approach of developing a hybrid knowledge representation
from the perspective of knowledge-based systems and artificial intelligence. Both sections introduce
terms and definitions providing the conceptual foundation for the following chapters. The current state
of the art in CDS is explored in Section 2.4. The scope of application of related work is described using
primarily the levels of abstraction of design representations. The description of how these approaches
formalize knowledge for design synthesis links back to the section about knowledge representations. In
the conclusion of Chapter 2, previous research efforts are structured according to the dimensions of de-
sign representation and knowledge representation. The aim is to discuss the expected contributions in
the context of research gaps in previous work.

These three chapters can be considered as a three-stepped approach describing the methods developed:

∙ Chapter 3 introduces object-oriented graph grammars for the computational synthesis of graph-
based product architectures using a Function-Behavior-Structure representation. This method is
validated through the synthesis of product architectures of automotive hybrid powertrains. The
generation of the solution space is shown and solutions with interesting characteristics are dis-
cussed. Individual solutions and the impact of evolving engineering knowledge are discussed.

∙ The method presented in Chapter 4 is targeted at making the physical effects contained in design
catalogs available for CDS approaches. For this purpose, abstraction ports are introduced that
represent the valid mapping between functional operators and physical effects. For the automated
assignment of abstraction ports, a method is presented that analyzes the equation structure of
physical effects. The assignment of abstraction ports is validated through the formalization of the
physical effects of two design catalogs and the development of a software prototype for the search
of suitable physical effects for a given function.

∙ Chapter 5 describes the software platform booggie5 (brings object-oriented graph grammars into
engineering) that implements object-oriented graph grammars and selected software components.
The formal foundation of this software, the booggie modeling language, is presented that enables
the realization of model transformation and tool integration approaches. The automated generation
of aircraft cabin layouts aims to validate the practical usability of the developed software platform
in an industrial context (Section 5.5).

An overall discussion of the research contributions, limitations and potential future work is presented in
Chapter 6. This thesis ends with a final conclusion.

5Project website: http://booggie.org

1.3 Thesis structure 11

4. Automated allocation of physical effects to functions using abstraction ports

4.2 Bond graph elements – the foundation for abstraction port types

4.3 Assignment of abstraction ports to functions

4.1 Method context

1. Introduction

2. Computational design synthesis for supporting conceptual design

3. Synthesis of product architectures based on object-oriented graph grammars

2.2 Overview of design representations

2.3 Overview of knowledge representations

1.1 Motivation

and problem

description

1.2 Objectives

and expected

contributions

2.1 The importance of representation for CDS

2.4 Related work

2.5 Conclusions

3.2 Knowledge representation:

Object-oriented graph grammars

3.3 Validation:

Synthesis of hybrid powertrains

3.1 Design representation: Function-Behavior-Structure

1.3 Research methodology and thesis structure

3.4 Discussion and future work

4.4 Assignment of abstraction ports to physical effects

4.5 Validation: Formalization of design catalogs

Contribution 3

4.6 Discussion and future work

5. Development of the software prototype booggie

5.2 Formal definition of the booggie modeling language (bgML)

5.3 Software architecture

5.4 Implementation of selected (sub-)components

5.1 Software requirements

5.5 Validation: Synthesis of aircraft cabin layouts

5.6 Discussion and future work

6. Discussion and future work

6.1 Research contributions

6.2 Limitations and potential for future work

Contribution 5 Contribution 6

Contribution 5 Contribution 6

Contribution 4

Research

Issue 1

Research

Issue 2

Research

Issue 3

Research

Issue 4

Research

Issue 5

Contribution 1 Contribution 2

Research

Goal 1

Research

Goal 2

Research

Goal 3

Research

Goal 4

Research

Goal 5

Expected

Contribution 1

Expected

Contribution 2

Expected

Contribution 3

Expected

Contribution 4

Expected

Contribution 5

Expected

Contribution 6

7. Conclusion

Contribution 5 Contribution 6

Figure 1-4: Overview of the thesis structure

2 Computational design synthesis for
supporting conceptual design

According to Simon (1996) design is an activity leading to "possible worlds satisfying specific con-
straints". Further, design can be seen, from a psychological perspective, as an activity that involves
creativity to achieve the goal of the creation of a new product (Pahl et al., 2007, p. 1). Consequently,
engineering design is the performance of design activities in the field of engineering. Depending on
the technological nature of the product to be designed, engineering design activities require a sound
knowledge foundation in "mathematics, physics, chemistry, mechanics, thermodynamics, hydrodynam-
ics, electrical engineering, production engineering, materials technology, machine elements and design
theory as well as knowledge and experience of the domain of interest" (Pahl et al., 2007, p. 1). Accord-
ing to the systematic approach of the design guideline VDI 2221 (VDI, 1987) and the design methodol-
ogy of Koller (1994), design activities can be grouped in three categories:

∙ synthesis as "the creative step itself: the conception and postulation of possibly new solutions"
(Antonsson & Cagan, 2001b), but also the modification and enhancement of an existing solution,

∙ analysis to determine the new solution’s properties,

∙ evaluation and decision to guide the design process through assessing the solution’s quality with
regards to the achievement of the constraints and design goal.

The purposeful combination of these activities determines the design strategy that is carried out in the
course of the design process. In design literature, methods, procedural models and best practices are used
to support the various design activities (Eder & Hosnedl, 2008; Ehrlenspiel, 2009; Koller, 1994; Pahl
et al., 2007; Ponn & Lindemann, 2011; Ulrich & Eppinger, 2008; VDI, 1987). By putting emphasis on
the term synthesis – as in Formal Engineering Design Synthesis – the goal of generating new solutions
is underlined but necessarily involves activities of the other two categories. The term formal refers to
the computational implementation of the design process requiring a high degree of structure and rigor
(Antonsson & Cagan, 2001b).

Recently, the term Computational Design Synthesis (CDS) gained more acceptance and became the com-
mon denomination for this relatively young field of research. The constant increase of computational
power promoted computational solving of engineering design tasks. This multidisciplinary field of re-
search unites advances in research in computer science, especially from the field of artificial intelligence,
and the systematic methods of engineering design to accomplish complex design and product develop-
ment tasks. Thus, CDS research investigates the complex interplay between "representation, generation,
and search of a design space" in search for new solutions to design problems (Cagan et al., 2005).

In the first section of this chapter, an overview of CDS is given by presenting general frameworks and
models for CDS which stress the importance of representation. The representation is the aspect of CDS
where the two disciplines of computer science and engineering design have an important overlap. The

14 2 Computational design synthesis for supporting conceptual design

following two sections are dedicated to these two viewpoints. While Section 2.2 reviews design repre-
sentations and addresses the question What needs to be represented to solve engineering design prob-
lems?, Section 2.3 reviews knowledge representations and focuses on answering the question How can
knowledge be represented to computationally solve design tasks?. The latter also serves the purpose of
presenting developments in the history of expert systems to draw conclusions for the further development
of research in CDS. Further, these two sections provide the term definitions and theoretical background
for the following sections. As schematically depicted in Figure 2-1, the reviewed design representations
and knowledge representations constitute two axes of a framework according to which the related state
of art in CDS is structured. Thereby, common characteristics, strengths and weaknesses of the reviewed
approaches can be discerned that are related to the applied representations. Both, the conclusions drawn
out of this review and the analogy from the history of expert systems corroborate the approach detailed
in the subsequent sections.

Knowledge

representations

Design

representations

CDS

approaches

StateOfArtStructure

Figure 2-1: Review framework for CDS approaches based on design representations and knowledge rep-
resentations

2.1 The importance of representation for CDS

To classify and consolidate research in CDS, generic frameworks have been proposed, two of which
are presented in Figure 2-2. Shea & Starling (2003) developed a framework to support the creation
of performance-based parametric CDS tools. It is built on a loop of the phases investigate, generate,
evaluate and mediate. This framework emphasizes the use of production systems for the representation
of "vast design languages" (Shea & Starling, 2003). The application of this framework is illustrated
using structural and mechanical design problems. Nevertheless, structuring CDS approaches according
to the aforementioned four phases is also valid for other areas of application.

Similarly, the framework by Cagan et al. (2005) also contains a loop made up of the three phases
generate, evaluate and guide which are based on a representation. These three phases define a search
process that is initiated through the formulation of a design problem by the human designer such that
it can be understood by the computational system. The final design is presented to the human designer
who can interpret the solution and potentially reformulate the design problem accordingly.

Though using a different notation, the two frameworks are essentially comprised of the same steps that
are required for computationally solving engineering design tasks. These are briefly described in the
following:

∙ Investigation (Starling & Shea) or Representation (Cagan et al.): The aim of this phase is to
define the representation for the computational design synthesis task. To achieve this, the class

2.1 The importance of representation for CDS 15

Generate

Evaluate

Guide

Representation

 Search

 process

User defined:

Problem description

Objectives &

Constraints

Designer

interprets

solution

Designer phrases

problem in a manner

understandable to

search process

Final

design

Parametric

synthesis

Investigate

G
e

n
e

ra
te

Evaluate

M
e

d
ia

te

Figure 2-2: Generic CDS-frameworks based on (Shea & Starling, 2003) and (Cagan et al., 2005)

of design problem needs to be investigated, e. g. based on prior solutions or known methods
and strategies, to identify an appropriate representation. Since this preparatory work builds the
foundation for all upcoming operations, it is assumed that this work is primarily done manually.

∙ Generation (Starling & Shea and Cagan et al.): In the generative part, new solutions are compu-
tationally synthesized based on the defined representation. This is accomplished by balancing the
use of randomly created naïve solutions and the use of complex problem solving knowledge. The
more a representation allows for the combinatorial creation of designs, i. e. a high interconnectivity
between the elements, the more applicable are search and optimization methods.

∙ Evaluation (Starling & Shea and Cagan et al.): To judge the quality of a computational design,
methods have to be employed that separate promising solutions from poor ones. In cases where
a high number of evaluations have to be carried out, it is preferable to integrate this task in the
computational loop; otherwise, it is conceivable that the assessment or even partial assessment of
the design can be done by the user.

∙ Mediation (Starling& Shea) or Guidance (Cagan et al.): After having evaluated the design’s per-
formance, the next step is to provide feedback to the system on how to proceed. Whether the next
synthesis steps are triggered by using search methods, e. g. simulated annealing, or knowledge-
based engineering methods, e. g. using an inference engine, depends directly on the representation
of knowledge.

Both frameworks emphasize the representation as an essential and fundamental part of realizing CDS
methods and tools. Shea& Starling (2003) propose the investigation of the problem domain through the
exploration of prior and recent design problems and appropriate design methodologies. Building blocks

16 2 Computational design synthesis for supporting conceptual design

and their interactions, i. e. the representation, are identified leading to an increased understanding of the
problem domain.

The representation determines the set of suitable search and generation techniques and, consequently,
has a high impact on the overall efficiency of CDS approaches and tools. The required level of detail,
the scope of application and the applied design strategy, or methodology, are determined in this first
phase. Cagan et al. (2005) underline the importance of the representation and identify the definition of
a suitable representation as the major challenge in CDS.

From this general perspective on CDS research, the claim that has been made in the hypothesis in Sec-
tion 1.2 (p. 6), regarding the importance of the representation for an increase of CDS usability, is sub-
stantiated. Hence, tackling an enhancement of the foundation of CDS approaches, namely the represen-
tation, seems to be a promising approach towards contributing to the objective of CDS research at large
of bringing CDS approaches into everyday engineering practice as stated by Chakrabarti et al. (2011).
The following two subsections are dedicated to the foundations of CDS representations. In contrast to the
aforementioned general frameworks, the discussion of representation for CDS in this thesis is subdivided
into design representation and knowledge representation.

2.2 Overview of design representations

Engineering design problems are typically characterized by their high complexity. This is increasingly
owed to the multiplicity of engineering domains that are combined in today’s products, e. g. mechanics,
electronics and software. Pahl et al. (2007) describe this complexity as a high number of components
having a high degree of interdependency. Further, the required multidisciplinarity in design teams, which
may be even geographically and temporally distributed, is another complexity driver (Szykman et al.,
2000). Hence, the design of complex systems in such a complex environment requires a systematic
approach for decomposing a problem into manageable sub-problems and sub-components. Depending
on the degree of interdependence, the design of these sub-systems can be carried out to some extent in
parallel (Simon, 1996).

The VDI guideline 2221 (VDI, 1987) describes a general, systematic problem-structuring approach,
see Figure 2-3. It integrates the decomposition of a problem into sub-problems and, further, into in-
dividual problems and the synthesis of a solution through the composition of individual solutions into
sub-solutions and, finally, into an overall solution. The procedure of decomposition is of vital impor-
tance in engineering design and can be seen in multiple variations. Pahl et al. (2007) for example apply
the decomposition task to functional modeling by breaking down an overall function into subfunctions
aiming at a reduction of complexity, see Figure 2-6. Such a structured, decomposition-based procedure
provides a strong foundation for computationally tackling design problems due to these advantages (VDI,
1987):

∙ "the recognition of sub-problems by revealing patterns and relationships"

∙ "the discipline to proceed systematically"

∙ "the development of alternative solutions"

∙ "the adoption of familiar and well-tried sub-solutions"

∙ "the introduction of a rationally organized division of labor"

2.2 Overview of design representations 17

Overall problem

Overall solution

(System)

Sub-solutions

(Sub-systems)

Sub-problems

Individual problems

Individual solutions

(System elements)

Figure 2-3: Decomposition of problems and synthesis of systems based on VDI guideline 2221 (VDI,
1987)

Nevertheless, Whitney (1996) states that there is a limit to problem decomposition in engineering de-
sign. Splitting design problems into subproblems induces new interdependencies between them and runs
counter to the objective of reducing complexity. This is, among other issues, the reason why engineering
design problems cannot be solved with the same tools and methods as successfully applied in VLSI6

design, e. g. for microprocessors.

In the classic engineering design literature (Pahl et al., 2007; Ulrich& Eppinger, 2008; Eder& Hosnedl,
2008; Ehrlenspiel, 2009; Koller, 1994), design is often described as a top-down transformation of a
functional product definition into a component-based product model. Besides decomposition, the transi-
tion of an abstract description to a more concrete description (termed concretization according to (Pahl
et al., 2007)) is another key element of this transformation. Ponn & Lindemann (2011) consider de-
composing and concretizing as orthogonal tasks in the design process according to the "Munich Model
of Product Concretization". Together with diversifying, these three tasks (and their respective inverse
tasks composing, abstracting and restricting) define a three-dimensional solution space in which various
design actions take place aiming at the fulfillment of the requirements represented in the requirements
space, see Figure 2-4. Generally speaking, these three tasks result in the generation and modification of
product models. Through concretization, different levels of abstraction arise. Different levels of gran-
ularity are achieved through the decomposition of an element into its sub-elements. Diversification can
be seen as the creation of alternative solutions while keeping the level of abstraction and the level of
granularity constant.

Another view on the design process is the one by Andreasen & Hein (1987, p. 63) who describe it as a
sequence of selection and evaluation actions resulting in an incremental definition of "design character-

6Very Large-Scale Integration

18 2 Computational design synthesis for supporting conceptual design

Technische Universität MünchenProduktentwicklung

© 2011 Prof. Lindemann Produktentwicklung und Konstruktion / Lindemann / 2011 / 1

Navigationsmodell der Produktkonkretisierung

• Der Entwicklungsprozess stellt
tendenziell einen
kontinuierlichen Übergang
vom Abstrakten zum
Konkreten dar (vertikale
Achse des Modells).

• Je nach Szenario sind auch
Schritte der Abstraktion nötig;
beispielsweise, um eine
Bauteilfunktion zu ermitteln.

Figure 2-4: Munich Model of Product Concretization, adapted from (Ponn & Lindemann, 2011), transla-
tion based on (Hepperle et al., 2009)

istics", i. e. concretization. These actions take place on different levels of abstraction and are depicted
as a multi-layered pyramid representing the "design degrees of freedom" as in Figure 2-5. This de-
piction of the design process is also termed "device pyramid of design" (Muller, 2007). Stankovic
(2011) interprets the navigation through this design process from a computational or formal perspective
as a "tree structured state space search process". To find a satisfying solution, the human designer is
confronted with the challenge of stepping forward and backward and considering promising options.
Thereby, models of different levels of abstraction and levels of granularity are generated and modified.
Various modeling approaches in the design literature aim at supporting the systematic passage through
this search process and additionally serve as means for communication and cooperation. In Figure 2-5,
these levels of abstraction are mapped to the phases of engineering design as introduced in Section 1.

Behavior

Task clarificationProblem

Technical processes

Functions

Principles

Organs

Structures

Material

Dimensions

Surface quality

Details

Shapes

Conceptual

design

Embodiment

design

Detail

design

Figure 2-5: Design degrees of freedom based on (Andreasen & Hein, 1987, p. 64) and mapping to the
phases of the engineering design process as depicted in Figure 1-1

A large part of the research on design methodology over the last few decades concentrated on the devel-
opment of modeling approaches for supporting these design tasks. This leads to a variety of modeling
paradigms which are subject to ongoing discussions. This section serves the purpose of introducing the

2.2 Overview of design representations 19

key elements for creating models for supporting conceptual design. Modeling elements and modeling
approaches are structured according to the levels of abstraction where they can be located. Further, differ-
ent grades of granularity of modeling elements are introduced that are typically interrelated through the
design actions of decomposing or composing. This research focuses on supporting the conceptual design
phase solely considering graph-based modeling approaches. This section introduces the key concepts of
design representations and, by that, establishes one dimension of the review framework (cf. Figure 2-2)
for comparing the state of the art in CDS in the following section.

As indicated in Figures 2-4 and 2-5, three generally accepted levels of abstraction can be identified:
Function, Behavior and Structure (FBS). While Function and Structure are common terms in all mod-
eling approaches, Behavior is, according to (Pahl et al., 2007), used to include "Physical effects" and
"Working principle". In turn, Ponn & Lindemann (2011) use "Models of working elements" as Behavior
in the Munich Model of Product Concretization (Figure 2-4). Gero (1990) published a formal descrip-
tion of FBS using transformations that are based on set theory. They define the levels of abstraction and
the transition actions between them. In a later paper (Gero, 2004), he descriptively paraphrases them
as: what the design object is for (Function7) , what the design object does (Behavior7) and what the de-
sign object is (Structure)7. Another FBS (Function-Behavior-State) representation is the one by Umeda&
Tomiyama (1995) that supports functional decomposition, the allocation of physical effects (termed phys-
ical concepts) and their embodiment into working principles (termed physical features). The behavior is
considered as changes of state of the physical features caused by physical phenomena.

Andreasen & Hein (1987) claim that another, even more abstract, level is located above functions: tech-
nical processes as depicted in Figure 2-5. They play a lesser role in the overall design literature but
are an essential part of the Theory of Technical Systems (Eder & Hosnedl, 2008). This design theory
sees the design process from a formal and rigorous perspective and the grammar-based CDS approach of
Stankovic (2011) builds on that representation foundation.

2.2.1 Function

In the vast majority of the design literature, functional modeling is the entry point to the conceptual de-
sign phase (Ehrlenspiel, 2009; Koller, 1994; Pahl et al., 2007; Ponn& Lindemann, 2011; Ulrich& Ep-
pinger, 2008; VDI, 1987). The goal of functional modeling is to create an abstract, solution-independent
description of the product to be developed. Thereby, bias from previous solutions is avoided and a vast
exploration of the solution space is guaranteed. A functional model is hence an abstract representation
of the system’s tasks regardless of any solution; it "shows how the general goal of a system is achieved"
(Erden et al., 2008).

One view on functions is that they describe input/output-relations as verb-noun pairs, e. g. "increase
speed" or "harvest potatoes" (Ehrlenspiel, 2009; Pahl et al., 2007). The verb can be considered as an
operator manipulating an object or a stream of objects that is designated by the noun. Design literature
does not provide one uniform definition for function. While Ponn & Lindemann (2011) define functions
as verb-noun pairs, Pahl et al. (2007) consider the verb itself as the function being associated to a flow.
To prevent confusion in this research, the terms (functional) operator and (functional) flow are used to
represent functions.

7The terms function, behavior and structure can easily be misunderstood. The specific terms being levels of abstraction within
FBS are capitalized (Function, Behavior and Structure), whereas these terms in the general sense, e. g. in "overall function"
or "data structure", are written in lower case letters.

20 2 Computational design synthesis for supporting conceptual design

An overall function models the task of the entire system and it can be decomposed into its subfunctions.
A complex design task is thus divided into simpler subproblems resulting in a decrease of the grade of
granularity, as depicted in Figure 2-6. Regarding this as the common foundation of functional modeling,
various subtypes can be differentiated. They primarily differ in the way functions are interrelated.

Energy

Material

Signals

Energy‘

Material‘
Signals‘

Subfunction

Overall function

Figure 2-6: Decomposition of an overall function into subfunctions, based on (Pahl et al., 2007)

Flow-oriented functional modeling focuses on the exchange of energy, material and signal between func-
tions and uses a designated arrow notation. Hence, the noun represents a flow whereas the verb models
an operation of that flow. In the recent decades, various sets of verbs and nouns were proposed as ele-
mentary building blocks for functional modeling. E. g. Pahl et al. (2007, p. 35) claim that all functional
operators can be reduced to a set of "generally valid functions": "change, vary, connect, channel, store".
However, other researchers define other fundamental sets of functions. An effort to consolidate previous
research on functional modeling resulted in the definition of the Functional Basis (Hirtz et al., 2002b)
that consists of two taxonomies defining functional operators and flows arising from an analysis of the
function sets of Pahl et al. (2007), Hundal (1990) and Altshuller (1984). While Pahl et al. (2007)
only explicitly represent the flow types energy, material, signal, the Functional Basis defines more de-
tailed flow types, e. g. translational mechanical energy. This step towards alleviating incompatibility
within functional modeling has been issued as technical note by the American National Institute of Stan-
dards and Technology (NIST) (Hirtz et al., 2002a) and is presented in Appendix 9.3.

Figure 2-7 shows a flow-oriented functional model of a potato harvesting machine that uses the basic
notation of Pahl et al. (2007). Figure 2-8 depicts a metamodel that was derived from this notation
defining the modeling elements and their appearance in a formal representation. The extension of the flow
type hierarchy according to the Functional Basis’ flow taxonomy is exemplarily depicted with ". . . ".

All of the following modeling approaches are characterized through a rough metamodel as shown in
Figure 2-8 that gives a condensed view of the modeling syntax. The following stereotypes are used for
defining the appearance of the modeling constructs based on a graph-based representation:

∙ A «Node» signifies an element type that can be used within a model.

∙ «Edge» represents types of connections that can be used to relate modeling elements.

∙ Abstract element types are written in italics. These cannot be instantiated and act as container for
properties from which regular element types can inherit.

∙ Inheritance relationships are represented with a white arrowhead targeting towards the more gen-
eral concept.

2.2 Overview of design representations 21

Figure 2-7: Functional model of a potato harvesting machine representing the overall function decom-
posed into subfunctions (Pahl et al., 2007, p. 276)

∙ A «Frame» can be used to group elements of the former categories.

∙ In the case that there is a standardized visual representation of modeling elements, their depiction
is included in a gray box.

∙ Relations between stereotypes are indicated by a short description including the reading direction
(�) and the associated multiplicity. The characterization of a relation with an edge type is indicated
with this symbol: �.

For a detailed description of this notation for describing metamodels, refer to Holt & Perry (2008).

has as input ►

has as output ►

<<Node>>
Function

1

0..*

exchanges a
flow with ► <<Edge>>

Flow

<<Edge>>
Energy

<<Edge>>
Material

<<Edge>>
Signal

<<Frame>>
System

consists of ▼

<<Node>>
Overall function

1

1

0..*0..*

...

...

...

...

...

...

...

...

...

Figure 2-8: Metamodel defining the modeling syntax for flow-oriented functional modeling

The relation-oriented functional modeling approach differentiates two types of functions: useful func-
tions and harmful functions that can be connected based on three relation types: is necessary for, causes,
is introduced to avoid (Ponn & Lindemann, 2011). Based on these modeling elements, four functional
patterns can be modeled as depicted in Figure 2-9. This modeling approach supports the investigation
of the logical structure of a system to analyze failure modes or problematic operating conditions. The
definition of the modeling domain of relation-oriented functional modeling is depicted in Figure 2-10

Flow-oriented functional modeling is the more widely applied modeling approach in the design literature.

22 2 Computational design synthesis for supporting conceptual design

Useful function

Useful function

Useful function

Harmful function

Harmful function

Useful function

Harmful function

Harmful function

“is necessary for“

“causes“

“causes“

“is introduced to avoid“

Figure 2-9: Patterns of relation-oriented functional modeling, translated from (Ponn& Lindemann, 2011,
p. 75)

is related to ►

<<Node>>
Function

1

0..*

<<Edge>>
Relation

<<Edge>>
is necessary for

<<Edge>>
causes

<<Edge>>
is introduced to avoid

<<Frame>>
System

consists of ▼

<<Node>>
Harmful function

<<Node>>
Useful function

Function Function

Figure 2-10: Metamodel defining the modeling syntax for relation-oriented functional modeling (the
metamodel notation is described on p. 20)

Various modeling subtypes can be differentiated and are comprehensively discussed by Erden et al.
(2008). The dissemination of relation-oriented functional modeling is much lower. However, it has some
significance within the TRIZ8 design methodology as detailed in (Herb, 2000). What is notable is that
relation-oriented functional modeling can be seen as a simplification and a problem-oriented adaptation
of flow-oriented functional modeling. Design literature, e. g. (Ponn & Lindemann, 2011), explicitly
encourages the designer to adapt modeling approaches – and by that the viewpoint on the system under
consideration – according to the needs of specific design situations. This is easy to accomplish for
simple, paper-based models, but, the adaptation of computational modeling tools is either not supported
or requires expert know-how in programming or metamodeling. In the area of formal modeling, the
formal definition of customized modeling languages is termed domain-specific language (DSL). DSLs
are used to build the conceptual foundation for the development of customized modeling tools, e. g.
when using the Eclipse Modeling Framework (EMF)9. While being widespread in software engineering,
an increasing acceptance of DSLs in engineering design can be observed such as in the work of Kerzhner
& Paredis (2009).

It can be stressed that the decomposition of functions, as it is described in widespread design literature,
is not explicitly defined within the modeling syntax, cf. the metamodels in Figures 2-8 and 2-10. This
is remarkable as the act of decomposing a function into its subfunctions is one of the essential concepts
of functional modeling. In their review paper on functional modeling, Erden et al. (2008) address this
issue in detail and provide a comprehensive discussion of functional modeling approaches.

8Russian acronym for Theory of Inventive Problem Solving
9Project website: http://www.eclipse.org/emf

2.2 Overview of design representations 23

2.2.2 Behavior

This level of abstraction describes how a system accomplishes the tasks required in the functional model.
The abstract, function-based description is transformed into a physical description of the system. This
is achieved by identifying suitable "solution principles" and combining them into a "principal solution"
(VDI, 1987). This preliminary embodiment of the system is typically modeled using sketches. Especially
in the mechanical engineering domain, embodiment features are associated with geometry or movement,
which is more conveniently represented in a drawing. This is why no commonly accepted or standard-
ized modeling approaches can be found in design literature as it is the case with the approaches for
modeling functions. Nevertheless, a common terminology evolved over the last decades that is primarily
influenced by Pahl et al. (2007) and designates elements of different grades of granularity on this level
of abstraction.

Physical effects are equation-based representations of the physical laws defining the behavior of physical
quantities. They concentrate on one specific equation disregarding side-effects or other unintended or
subordinate effects. This idealized description links directly to function and contains the key mechanism
for the realization of function. Physical effects can also be combined to fulfill a function (Pahl et al.,
2007, p. 38). Design catalogs, such as issued by Koller (1994) and Roth (2001), provide a large source
of knowledge and methodological support for the identification of suitable physical effects. The embodi-
ment of physical effects requires the assignment of materials and geometric properties. Doing so for one
or the combination of more physical effects results in the definition of a working principle.

Function Physical effect Working principle

Transfer
torque

T1 T1 H
7/

r6

FN

Friction

FF=μ·FN

FF

V

Figure 2-11: Example for a function that is fulfilled by a physical effect that is implemented with a
working principle, adapted from (Pahl et al., 2007, p. 39)

1

0..*

exchanges a
flow with ►

<<Edge>>
Flow

<<Frame>>
Working structure

<<Node>>
Working principle

is embodied with ▼

1

1..* 1

0..*

has relation
with ►

1

1..*

consists of ▲

<<Node>>
Physical effect

<<Edge>>
Energy

<<Edge>>
Material

<<Edge>>
Signal

...

...

...

...

...

...

...

...

...

Figure 2-12: Generic metamodel defining the modeling syntax for Behavior modeling according to the
textual description of (Pahl et al., 2007) (the metamodel notation is described on p. 20)

24 2 Computational design synthesis for supporting conceptual design

The example in Figure 2-11 shows the correlation between a function, a physical effect and the embod-
iment in a working principle: The function of transferring torque can be fulfilled based on the physical
law for Coulomb friction relating the frictional force FF to the normal force FN through the friction
coefficient µ. Consequently, the transfer of torque necessarily requires the application of a normal force.
The working principle is based on a clamping hub that applies a normal force through the ISO fit H7/r6.
The interaction of this working principle with other working principles constitutes the working structure
that builds the foundation for the development of concrete components. The metamodel in Figure 2-12
defines these interrelationships according to the description of Pahl et al. (2007) in a generic repre-
sentation. However, there is no established modeling standard for Behavior and various alterations of
this representation can be found. Especially the relations between working principles, here generically
defined as "has relation with", can be expanded to capture more specific spatial, energetic or material-
related relationships and constraints.

It can be observed that, if the design task does not require the development of new components, this
level of abstraction is disregarded. In this case, a direct mapping from functions to already existing
components is achieved. Komoto& Tomiyama (2012) describe a conceptual design process that explicitly
takes this point into consideration. Gero (1990) termed this mapping "catalogue lookup" and does not
consider this as part of designing.

2.2.3 Structure

According to Gero (2004), this level of abstraction "describes the components of the object and their
relationships". However, designing the detailed geometry of components based on working structures is
a complex and time-consuming process that is not carried out in the conceptual phase. Consequently, this
level of abstraction does not contain that kind of detailed information. In the scope of this research, the
term component should rather be seen as a division of the working structure into "realizable modules"
(VDI, 1987) that is later on further detailed to be manufactured.

Design literature provides no general indication of how to model such component structures. Neverthe-
less, Ulrich (1995) and the VDI guideline 2221 (VDI, 1987) stress the great necessity to define relations
between components as early as the conceptual design phase. Even if this definition has to be revisited
and adapted in later design phases, this preliminary layout of the system "is particularly important in the
case of complex products, as it facilitates the efficient distribution of design effort. It also helps with the
identification and solution of embodiment design problems" (VDI, 1987).

<<Node>>
Component

1

0..*

exchanges a
flow with ► <<Edge>>

Flow

<<Frame>>
System

consists of ▼

<<Edge>>
Energy

<<Edge>>
Material

<<Edge>>
Signal

...

...

...

...

...

...

...

...

...

Figure 2-13: Generic metamodel defining the modeling syntax for component-based Structure modeling
(the metamodel notation is described on p. 20)

2.2 Overview of design representations 25

The need for representing the relations between components while having almost no information about
their inner workings calls for a block-oriented representation, treating components as black boxes. Fur-
ther design activities turn them into white boxes. Nevertheless, there are numerous types of relations
between the components that might be relevant for consideration on this level of abstraction. The fact
that components ultimately embody the functions defined earlier makes it beneficial to use the same
taxonomy of flows used in functional modeling, consisting of energy, material, signal flows and their re-
spective subtypes as defined in the Functional Basis (Hirtz et al., 2002b). Moreover, geometric relations
might be of interest, e. g. for addressing packaging problems. Here too, taxonomies are at hand defining
geometric relations, as for example in the work of Komoto & Tomiyama (2010), which provides a class
hierarchy of spatial relations. A more holistic solution has been elaborated by Liang& Paredis (2004) in
their work on the definition of a port ontology. It comprises a structured definition of various flow types,
geometric relations, relative movements between components and logical relations.

2.2.4 Reflections on design representations

The modeling approaches presented in this section each consider one level of abstraction. Modeling con-
structs that could create a mapping between the mentioned levels of abstraction could not be identified
in the description of how to use these modeling techniques nor in application examples of the reviewed
literature. Also composition/decomposition-relationships have not been considered. For example, no ex-
plicit representation of the dependency of an overall function with its subfunctions is provided according
to the functional modeling approach of Pahl et al. (2007).

Within this thesis the term model is understood as defined in the VDI guideline 3681 (2005): "Depiction
of a system or process in another conceptual or concrete system, which is obtained on the basis of the
application of known legitimacies, an identification or assumptions and which displays the system or the
process with sufficient accuracy with respect to selected questions." Product models represent a specific
type of model that focus on the depiction of products or future products. It is assumed in this thesis that
product models are data models that only cover one level of abstraction. This assumption is backed up
by various examples of product models in the design literature, e. g. function models or CAD models
in (Ponn & Lindemann, 2011, p. 21). The vocabulary and modeling logic of product models is defined
in a design representation that is, using the method presented in this thesis, formally described as a
metamodel. The International Organization for Standardization (2004) defines this term as a "data
model that specifies one or more other data models".

Models that represent products on multiple levels of abstraction are termed product architectures (Ulrich,
1995). They are typically composed of the Function and the Structure level. Or, as Ulrich (1995) defines
it: "(1) the arrangement of functional elements; (2) the mapping from functional elements to physical
components; (3) the specification of the interfaces among interacting physical components". Also in
later publications, this definition is supported by Ulrich & Eppinger (2008). Other researchers extend
this view of the product by adding working principles (Andreasen, 1992; Komoto & Tomiyama, 2010).
Stone et al. (2000) additionally consider modules of functional models from which modular component
models on the Structure level are identified. Other approaches can be found that support manual modeling
on different levels of abstraction but domain independent implementations that synthesize such models
computationally are rare (Erden et al., 2008). Crawley et al. (2004) emphasize the importance of
developing support for exploring product architectures on multiple levels of abstraction such as Function,
Behavior and Structure. This issue is taken into account in this thesis and motivates the definition of the
a design representation for graph-based product architectures as detailed in Section 3.1.

26 2 Computational design synthesis for supporting conceptual design

2.3 Overview of knowledge representations

According to Luger (2005, p. 37) the task of any representation scheme is to grasp the essential charac-
teristics of a problem domain and make that description accessible to a problem-solving procedure. He
claims that the main criteria for assessing the suitability of knowledge representations are their expres-
siveness and their efficiency. A good trade-off between these two dimensions has to be found. Computa-
tional restrictions or the complexity of the problem might require increasing efficiency to the detriment
of the expressiveness. However, this must not lead to "limiting the representation’s ability to capture
essential problem-solving knowledge." The importance of representations for CDS and the fact that it
represents a core challenge has been described in Section 2.1.

In the following sections, fundamentals of common knowledge representations are given. Knowledge
representations can be clustered in three categories:

∙ Rule-based knowledge representation: Rules capture knowledge in a procedural manner. They
can be seen as IF-THEN-relations representing the transition of an initial situation10 to a modified
situation. Often, rules contain heuristics describing expert knowledge for problem solving.

∙ Model-based knowledge representation: This category comprises a set of representations (frames,
constraints, description logics) that are either built on one another or evolved in parallel. Model-
based representations capture knowledge declaratively. They represent in theoretical models how
a situation is or should be and rely on reasoners to perform actions for the transition.

∙ Case-based knowledge representation: Learning from problem-solving in previous situations,
case-based reasoning approaches aim at solving problems based on analogies. They make use
of procedural and declarative knowledge representations.

2.3.1 Rule-based knowledge representation

Rules represent a good compromise for formalizing knowledge in a comprehensible, yet formal, rep-
resentation (Beierle & Kern-Isberner, 2008, p. 72). Rules are conditional sentences consisting of a
condition, or premise, A and a conclusion, or consequence, B. A rule R can be represented in the form:

R : IF (A is TRUE) THEN B

Depending on the nature of B, two types of rules can be differentiated: Rules of inference represent the
logical connection between a condition A and a conclusion B and are usually displayed by separating
them with a horizontal line (Boolos et al., 2007, p. 169):

R :
A
B

e. g.
The fuel tank is empty

The combustion engine will not operate
(2.1)

Production rules, in turn, also consist of a condition A, but the consequence B is formulated as an
operation to be executed if the condition is true. As they allow for the identification of a specific situation
in A and define the measures to be taken in B, they are also referred to as situation-action rules (Russell

10The term situation is used here to describe a system at a specific state. Knowledge-based methods can be applied to perform
the transformation from an initial to a final situation. This definition is adapted from (Russell & Norvig, 2003, p. 329).

2.3 Overview of knowledge representations 27

& Norvig, 2003). The condition A is termed left-hand side L whereas the consequence, or action, is
termed right-hand side R. Production rules are displayed with an arrow pointing from L to R:

R : L→ R e. g. The fuel tank is empty→ Switch to electrical mode of driving (2.2)

In both cases, the condition can be composed of sub-conditions being connected by logical AND and
logical OR operators. Therefore, the conclusion B is true or, in other words, the action B applies when
all conditions connected by a logical AND and at least one of the conditions connected by a logical OR
evaluate to true.

The conclusion B in equation 2.1 is the result of a logical deduction returning either TRUE or FALSE.
In contrast, production rules encode knowledge on how to proceed when the situation in L arises. This
reasoning does not necessarily have to be logical. The condition of the rule in L is a pattern that deter-
mines when that rule can be applied to a problem instance. A production rule’s right-hand side R contains
imperative statements representing actions for modifying, replacing and adding data structures such as
strings or graphs and defines by that the associated problem-solving step.

Using knowledge formalized in a rule-based representation for computational problem solving, is the un-
derlying principle of early expert systems. Based on the application of inference rules, early approaches
concentrated on answering questions, rather than on making decisions by modeling human problem-
solving behavior. For example MYCIN, developed in the early 1970s by Shortliffe et al. (1975), was
developed to diagnose bacterial infections based on a set of about 600 inference rules. The main concep-
tual shortcoming was the lack of a theoretical model of the application domain out of which rules could
have been deduced. Knowledge had to be acquired and formalized by interviewing experts, who in turn
acquired their knowledge from textbooks, other experts and through their experience (Russell& Norvig,
2003, p. 23). Consequently, the knowledge acquisition step was an expensive procedure. Another – even
earlier – expert system was DENDRAL, developed in the late 1960s by Lindsay et al. (1993) for analyz-
ing mass spectrographic data. DENDRAL infers the structure of molecules from their chemical formula
and mass spectrographic data for applications in organic chemistry. DENDRAL was one of the first pro-
grams to achieve expert level problem-solving performance. However, the representational formalisms
used in DENDRAL are highly specific to the domain of chemistry and could not be transferred to other
application areas. Nevertheless, the approach was so successful that descendants of the system are used
in chemical and pharmaceutical laboratories throughout the world (Luger, 2005, p. 23). Later gener-
ations of expert systems built on hybrid knowledge representations by integrating other paradigms for
knowledge representation. Especially model-based knowledge representations were developed.

While the term Expert System is generally used for systems using knowledge for problem solving, the
term Production System encompasses a subset of expert systems and is used in a more specific sense
(see overview in Figure 2-14). Production systems are based on a rule-based representation as well, but
solely consist of production rules. The first generation of expert systems was based on that kind of rule-
based representation. Hence, first generation expert systems and production systems are considered as
equivalent. Production systems are composed of a rule set, a working memory and an inference engine.
They are characterized as follows:

1. The rule set consists of production rules each defining a single chunk of procedural problem-
solving knowledge.

28 2 Computational design synthesis for supporting conceptual design

Expert

Systems

First Generation

Expert Systems

Production

Systems

Shape

Grammars

String

Grammars

Graph

Grammars

Figure 2-14: Overview of expert systems, production systems and grammars

2. The working memory contains the current state of the data structure in a reasoning process. This
description can be a string, a shape or a graph (termed host graph) and represents the pattern that
is matched against the condition’s part L of a production rule to select the problem-solving action
R. If the condition of a rule is matched by the contents of working memory, the action associated
with that condition is executed. Actions of production rules are specifically designed to alter the
contents of working memory.

3. The inference engine is a control structure that determines the logic of rule execution for problem-
solving. Luger (2005, p. 200) describes a simple recognize-act cycle: The working memory is
initialized with the description of the initial problem. The actual state of the problem-solving is
kept in the working memory as a set of patterns that are matched against the conditions of the
production rules. This results in a subset of the production rules, called the conflict set. The
rules’ left-hand sides match the patterns in working memory. Thereby, the production rules in
the conflict are enabled. One of the production rules in the conflict set is selected for resolving a
conflict and is fired. To fire a rule, its action is performed, resulting in a change of the contents in
working memory. After the selected production rule is fired, the cycle continues with the modified
working memory. The process stops when the content of the working memory does not match any
rules’ left-hand side conditions anymore. Based on the approach of rule sequences (presented in
Section 3.2.2), various problem-solving strategies, such as the recognize-act cycle of Luger (2005)
but also search or optimization algorithms, can be implemented.

Dym& Levitt (1991, p. 14) add to these three components input/output facilities to enable the interaction
with a user and a knowledge acquisition facility for acquiring further knowledge, either from experts or
automatically from libraries or databases. They state that these five components form the basic structure
of knowledge-based systems.

Production systems can be further distinguished according to which data structures they apply, the way
they are defined, the interpretative mechanism used to apply production rules and the resulting type of
data structure (Gips & Stiny, 1980). This characterization is based on the term grammar that was first
introduced by Chomsky (1957) in the sense of a mathematical concept for the generation of sequences
of symbols, such as strings, shapes or graphs. As the method presented in this thesis builds on the
foundation of graph grammars, a deeper insight into this specific type of production systems is given in
Chapter 3.

2.3 Overview of knowledge representations 29

The advantages of rule-based knowledge formalization are:

∙ The underlying principle of rules are widely applied in natural language in conditional sentences
(Beierle & Kern-Isberner, 2008, p. 73). Hence, "production rules are a natural and intuitive way
for representing heuristic knowledge" (Dym & Levitt, 1991, p. 151). This is important in domains
that rely on heuristics for problem solving, e. g. engineering design.

∙ Human experts tend to formulate knowledge in rule-form (Beierle& Kern-Isberner, 2008, p. 73).

∙ The reasoning mechanism is simple, flexible and therefore robust (Rude, 1998, p. 72). Further, the
separation of the representation and application of knowledge "enables an iterative development
process" (Luger, 2005, p. 310) and facilitates debugging of the knowledge base.

∙ Purely rule-based systems are efficient in applications with limited scope. In such application areas
they have proven to be "extremely useful" (Luger, 2005, p. 310).

In contrast, the disadvantages of a rule-based knowledge formalization are:

∙ The extraction of knowledge from the human expert and the formulation of rules is an expensive
process. Often, rules acquired from experts "are highly heuristic in nature, and do not capture
functional or model-based knowledge of the domain" (Luger, 2005, p. 311). They need to be
generalized to be applicable in a wider scope.

∙ Maintenance of extensive rule sets is very difficult, (Kläger, 1993; Leemhuis, 2004). Puppe (1990)
illustratively names deeply intertwined rule sets "rule spaghetti".

∙ The reasoning logic for solving complex problems that involves the concatenation of procedural
rules is hard to grasp for the human user (Rude, 1998, p. 72).

∙ The knowledge in manageably small rule sets tends "to be very task dependent. Formalized domain
knowledge tends to be very specific in its applicability" (Luger, 2005, p. 311).

2.3.2 Model-based knowledge representations

Frame-based and object-oriented representation

The term frame was first introduced by Minsky (1975). The intention was to capture knowledge about a
problem domain in organized data structures. More specifically, frames allow for the explicit represen-
tation of implicit connections of information and support by organizing knowledge into more complex
units reflecting the organization of objects in the domain (Luger, 2005). Frames can be considered a
specific implementation of semantic networks, which provide an earlier scheme for representing knowl-
edge in graph-based, yet less structured, manner (Sriram, 1997, p. 123). Frames also use graphs as
the underlying data structure that contain a fixed set of relation types and realize the key features of
object-orientation. This representation can be seen as an attempt to handle the overwhelming amount of
information in large semantic nets without decreasing their high expressiveness (Dym & Levitt, 1991,
p. 140). As a result, the disadvantage of ill-defined names and edges can be partially avoided. An
overview of graph-based structures for knowledge representations is given in Lehmann (1992).

In the following, essential concepts of this knowledge representation are depicted using a frame descrip-
tion of a car as an example, Figure 2-15. Note: This is just a small sample of a more comprehensive

30 2 Computational design synthesis for supporting conceptual design

Car

specialization of: Vehicle

brand

model name

number of wheels = 4

parts: Wheel(s), Engine

Wheel

diameter

Vehicle

Engine

position: front-left OR front-

right OR rear-left

OR rear-right)

maximum torque

behavior: heat generation,

torque production

my_car: Car

brand = Audi

model name = A3

number of wheels = 4

parts = wheel1, wheel2,

wheel3, wheel4, ice

ice: Engine

maximum torque = 250 Nm

Frames

Instantiation

wheel2: Wheel

diameter = 620 mm

position = front-right

wheel4: Wheel

diameter = 620 mm

position = rear-right

wheel3: Wheel

diameter = 620 mm

position = rear-left

wheel1: Wheel

diameter = 620 mm

position = front-left

mass

Figure 2-15: Part of a frame-based description of a car and example instantiation (representation schema
adapted from (Luger, 2005))

frame model. A frame is a form-like definition of an object, e. g. car, describing the object’s charac-
teristics by means of slots11 , e. g. number of wheels. Instances can be derived from each frame. They
assign concrete information to the characteristics of a frame’s definition. Slots are attribute-value pairs
(e. g., attribute: brand, value: Audi) and they can represent various kinds of information, (Luger, 2005,
p. 245), such as:

∙ Frame identification information: Information for the differentiation of individual frame instances,
e. g. brand, model name.

∙ Relationship between frames: This kind of slot allows the representation of the dependency be-
tween frames. In this example two relation types can be distinguished:

– Generalization/specialization: Vehicle is a more general frame than car. One could also say
that car is a specialization of vehicle. This dependency is indicated by the specialization slot
and the arrow pointing from the specialized term car towards the generalized term vehicle.
Generalization/specialization relations constitute hierarchies that are commonly referred to
as is-a-hierarchies or hierarchies of inheritance.

– Aggregation: A car is, among other components, composed of wheels and an engine. This
kind of relationship is represented by the slot parts while the slot number of wheels defines
that exactly four wheels are required. This type of property defining the number of frames
in a set that can be associated to a frame is termed multiplicity or cardinality. Aggrega-
tion relations constitute hierarchies that are commonly referred to as part-of-hierarchies or
hierarchies of aggregation.

11In his paper of 1975, Minsky used the term terminal. However, since then, the term slot has become established.

2.3 Overview of knowledge representations 31

∙ Descriptors of requirements for a frame: These requirements must be fulfilled when a new instance
of that frame is created. For example, a wheel has to have a specific position that is defined by the
slot position and is set to front-right for wheel2.

∙ Procedural information on use of the structure described: This is a feature that shows the prox-
imity to programming languages. In particular the possibility of declaring and defining instance
functions. It enables linking to procedural descriptions of a frame’s characteristics, e. g. a simula-
tion model for representing a specific behavior of a frame as for example heat generation or torque
production in an engine. A simulation language, such as MODELICA12, is well-suited to model
the physical behavior of an engine. Hence, this concept allows for integrating representations that
are better suited for specific purposes.

∙ Frame default information: Unless otherwise provided, these values are assigned by default to
instances, e. g. the multiplicity of the wheels in the slot number of wheels.

∙ New instance information: Many slots are left unspecified, such as the maximum torque of an
engine. Values have to be assigned upon creation of a new instance, e. g. maximum torque = 250
Nm for an internal combustion engine.

Frames are used as blueprints to define instances. In programming, for this concept the term class
is commonly used to describe a data structure that can be instantiated to create class objects or class
instances. To prevent confusion, the term class is used in the context of the development of the software
prototype booggie in Chapter 5, whereas the term type designates blueprints of instances in the context
of modeling and knowledge representation.

Frame-based representations support type inheritance. The slots and default values of a frame type are
inherited across the subtype hierarchy. For example, the mass property of the vehicle frame automati-
cally becomes a property of the car frame as well and all of its potential subtypes through inheritance.
This implies that a system queries all supertypes for slots that have to be filled upon instantiation. Frames
were the first knowledge representation explicitly defining the concept of inheritance as part of the rep-
resentation syntax. Another important feature in terms of the expressiveness is the possibility to include
procedural, or code-based, knowledge representations. Thereby, frames combine the declarative nature
of knowledge representation with a procedural representation.

The use of frames can also be interpreted from a modeling perspective. The lower part of Figure 2-15,
i. e. the instantiation of the frames, is a model that uses the element types defined in the upper part. In
turn, the upper part can also be interpreted as a model; namely the type model of the instance model.
Such types of models are commonly termed metamodel in accordance with the definition presented in
Section 2.2.4.

The similarity of Minsky’s work to ideas that developed during the rise of object-oriented programming
led to the accusation he was recycling prior work (Russell & Norvig, 2003, p. 366). Especially the
concepts of default values, inheritance and separation between type- and instance-level are particularly
important in programming as well. These concepts were already in use in the late 1960s when Dahl et al.
(1970) developed the programming language SIMULA, which is considered the first object-oriented
programming language. As the name suggests, SIMULA is a simulation modeling language primarily
focused on the description of physical systems.

12Website of the MODELICA association: http://www.modelica.org

32 2 Computational design synthesis for supporting conceptual design

Research efforts towards structuring knowledge using frame-based, or object-oriented, representations
can be found in the field of engineering design. The Core Product Model 213 (CPM2) (Fenves et al.,
2008) captures product information, e. g. functions, behavior, geometry, material, to provide a template
of a product model that is not specific to any application, software or product development process. Sim-
ilarly, the goal of the MOKA14 project (Stokes & MOKA Consortium, 2001) was to develop a general
framework for structuring and representing engineering knowledge. The result was a two-sided model-
ing framework containing an informal model using natural language and a formal model using an object-
oriented representation. Both, the formal MOKA representation and CPM build on class definitions using
UML15 that use the same concepts as frames. In both projects, the importance of incorporating multiple
levels of abstraction within one product architecture is acknowledged. For a review of product modeling
frameworks that focus on the exchange of product information, refer to (Fenves et al., 2005).

The advantages of frame-based representations are as follows:

∙ The formalism of inheritance allows an economical, hierarchical representation of element prop-
erties. Every attribute does not have to be repeated at every level but is inherited. Further, "a
hierarchical classification is usually a fairly comprehensive classification since all rules for ag-
gregation and distinction must be made a priori." Hence, a lot of knowledge about the problem
domain, i. e. "entities, their attributes, and the important criteria" has to be gained in advance
(Kwasnik, 1999).

∙ High level of expressiveness through the combination of declarative and procedural knowledge
representation.

∙ Both, hierarchical dependencies (inheritance) and network-like dependencies (slots) can be rep-
resented. Thus, frames provide an efficient approach for organizing knowledge in a declarative
representation.

∙ Complex objects can be represented as a single frame, rather than as a large network structure.
This provides a natural and intuitively understandable representation (Luger, 2005).

In terms of expressiveness, economy of notation and comprehensibility, frames are a very good compro-
mise. However, the following issue remains as a disadvantage:

∙ Frames only provide means to define pointers to procedural descriptions within slots, such that, an
additional representation, e. g. a programing language or a rule-based knowledge representation,
is required to reach their full potential.

Constraint-based representation

Dependencies between objects can be described as a mathematical problem based on constraints. These
are defined as conditions on objects’ variables that have to be met for obtaining a valid solution. If
multiple variables are interrelated, a constraint network is defined. Hence, the goal of solving a constraint
satisfaction problem (CSP) is to find valid values for each problem variable.

13The initial Core Product Model was developed at the American National Institute of Standards and Technology (NIST) and
further developed to a generic, abstract model in the CPM2.

14Methodology and tools Oriented to Knowledge based Applications
15Unified Modeling Language

2.3 Overview of knowledge representations 33

One of the earliest famous constraint satisfaction problems was the 8-queens problem, Figure 2-16. It
is solved when eight queens are placed on a chessboard such that no queen can be attacked by another
queen (Russell & Norvig, 2003, p. 66). This problem was formulated in 1848 by the chess player Max
Bazzel and serves since the early days of constraint satisfaction research as a benchmark problem. It can
be solved with a recursive backtracking algorithm (Freuder & Mackworth, 2006). This problem was
popular in recreational mathematics in the late 19th century (Lucas, 1891) and led to the first approaches
for solving CSPs computationally (Lehmer, 1957).

Q

Q

Q

Q

Q

Q

Q

Q

1

2

3

4

5

6

7

8

A B C D E F G H

Figure 2-16: One possible solution for the 8-queens problem (Tsang, 1993)

Freuder& Mackworth (2006) state that the "interest in constraint satisfaction developed in two streams":

The language stream focused on the development of languages for modeling, programming and solving
CSPs. Including constraint-type statements in procedural programming languages, such as FORTRAN,
that had already been proposed in 1964 by Wilkes. In 1967 the logic programming language Absys was
developed that built on a declarative representation (Elcock, 1990). A specific language for expressing
CSPs as means for representing knowledge about electrical circuits is CONSTRAINTS; it has success-
fully been applied for synthesis tasks (Sussman & Steele, 1980) in electric circuit design. Another early
application in the domain of engineering is the system called CARI. It represents the knowledge of
the human expert to plan "the sequence of machining cuts of mechanical parts" (Descotte & Latombe,
1981).

The algorithm stream, in contrast, was primarily influenced by the research community in the area of
machine vision. Using a network-based representation, Montanari (1974) developed a formal framework
for the representation and handling of constraints for picture processing. Representing the consistency
of constraints in graphs and the development of algorithms for eliminating inconsistencies within these
structures has been another achievement that emerged out of research on machine vision (Mackworth,
1977). In general, research in this stream focused on generic computational methods for solving CSPs,
(e. g. (Haralick et al., 1978; Haralick & Shapiro, 1979, 1980)) rather than responding to the need to
solve CSPs for specific applications.

The following conclusions can be drawn out of these two research perspectives on CSPs: The language
stream indicates that this representation type is an appropriate way to formalize engineering knowledge
for synthesis purposes. For design tasks involving systems’ parametric properties, e. g. dimensioning of
parameters, this representation is a natural fit. On the other hand, the algorithm stream shows potential
for combining a graph-based representation with constraint modeling. Further, the strong focus on the

34 2 Computational design synthesis for supporting conceptual design

development of methods for solving CSPs led to a high maturity of computational toolkits; an overview
is given in (Frühwirth & Abdennadher, 2006).

The combination of a mature modeling foundation together with robust computational solving meth-
ods makes the constraint-based representation a promising all-round package for modeling and solving
parametric design problems.

According to Freuder & Mackworth (2006), a CSP P can be defined as a triple P = (X,D,C) where
X is a n-tuple of variables X = (x1, x2, x3, ..., xn). Each variable xi has a domain di of possible values
contained in the n-tuple D = (d1, d2, d3, ..., dn). C is a t-tuple of constraints C = (c1, c2, c3, ..., ct) where
each constraint c j contains a subset of the variables X and specifies valid combinations for that subset
according to D. The solution of a CSP is a n-tuple A = (a1, a2, a3, ..., an) where each ai contains the valid
value for a constraint xi that does not violate any other constraints.

Often, constraints represent quantitative relations between parameters such as in the work of Münzer
et al. (2012) where constraints are used for dimensioning automotive powertrain components. In the
scope of this thesis, these constraints are termed parametric constraints. On the contrary, topological
constraints represent topological relations between components. Rozenblit & Hu (1992) use the term
coupling constraints and state that they "impose a manner in which components [. . .] can be connected
together"16. In Section 3.2.1 the concept of ports is introduced allowing to clearly represent structural
constraints. An example that illustrates the theoretical foundation for modeling constraints leading to the
definition of ports can be found in the Appendix 9.1.

Rude (1998) states that constraint-based representations are a powerful approach for representing design
inherent dependencies, which is being widely applied in combination with a frame-based or rule-based
representation within the expert systems of the second generation. One of the key applications in engi-
neering is the solving of geometric constraints in CAD systems (Hoffmann, 2005).

Advantages of constraint-based modeling and constraint solving are:

∙ Constraint modeling is a powerful declarative representation for parametric relations, such as geo-
metric constraints in CAD systems.

∙ CSPs are a formal representation that is computationally well supported. Various professional
software tools are available, e. g. Matlab17.

∙ Constraints allow the definition of boundary conditions within which a solution has to be found
without defining the solution itself. (Rude, 1998)

∙ Constraints can be used in a bidirectional manner as they represent equations that can be rear-
ranged, e. g. x = y − 1 ⇒ y = x + 1. Hence, the user does not have to specify inputs and outputs;
the right ordering of equations is achieved by the constraint solver (Leemhuis, 2004).

Disadvantages of this knowledge representation are:

∙ Representing topological constraints purely using constraint modeling is cumbersome and unintu-
itive. Ports can be seen as a simplification layer to overcome this shortcoming.

16Other common terms are structural constraints or network structure constraints such as used in (Wyatt et al., 2012)
17Company website: http://www.mathworks.de/products/matlab

2.3 Overview of knowledge representations 35

∙ Constraint-based representations have a rather mathematical appearance. Engineers are used to
more visual representations, which require an additional representation only for the graphical user
interface, such as those implemented in current CAD systems.

∙ Constraints are rarely isolated. In most cases, they are concatenated in constraint networks, which
can easily become confusing.

For a comprehensive overview on using CSP in engineering design, refer to Bettig & M. Hoffmann
(2011).

Description logics and ontologies

While frames can be seen as one specific type of semantic networks, description logics (DL) evolved
from them responding to the need to formalize the networks’ meaning while keeping emphasis on taxo-
nomic structure as an organizational principle (Russell & Norvig, 2003, p. 353). According to Baader
(2010), a DL-based knowledge base consists of two components: the TBox and the ABox. The TBox
defines the set of vocabulary, i. e. terminology and their relationships. It can be seen analogously to the
definition of types in frame-based representations. Assertions about instances of TBox-types are con-
tained in the ABox. Nardi & Brachman (2010) claim that the knowledge about terminology in the TBox
is considered to remain static. Knowledge that is specific to instances and is contained in the ABox is
seen as time-dependent or "subject to occasional or even constant change". In this context, types are
termed concepts, relationships are termed roles and instances are termed individuals. An illustrative
example in the Appendix 9.2 presents the key elements of DL.

The first system that built on DL was KL-ONE (Brachman & Schmolze, 1985). It was developed in
the late 1970s and introduced most of the language features that were further explored in subsequent
research. While the application of KL-ONE targeted the modeling on the concept level, i. e. TBox,
CLASSIC was developed at AT&T (Borgida et al., 1989) to support software engineering of large soft-
ware systems. In the domain of medicine, expert systems showed the potential of knowledge-based
methods but also their limitations coping with complex problem domains with a solely rule-based repre-
sentation. The challenge of constructing and maintaining large-scale knowledge bases, that contain up to
hundreds of thousands of concepts, led to the development of such specialized DL systems, for example
GALEN (Rector & Nowlan, 1994). The need to combine multiple knowledge sources made language
standardization necessary (Nardi & Brachman, 2010). Patel-Schneider & Swartout (1993) proposed
a language specification approach to facilitate knowledge sharing, which resulted in the DL standard
language KRSS.

The use of DL approaches for reasoning on XML documents laid the foundation for research efforts
in capturing knowledge contained in the World Wide Web (Nardi & Brachman, 2010). The goal was
to "support intelligent applications that can better exploit the ever increasing range of information and
services accessible via the web" and led to the development of the Ontology Web Language (OWL)
(Horrocks et al., 2010). Gruber (1993) defined ontologies as "an explicit specification of a conceptual-
ization. The term is borrowed from philosophy, where an ontology is a systematic account of Existence.
For knowledge-based systems, what ’exists’ is exactly what can be represented." OWL proved that de-
scription logics are a suitable means for the representation of ontologies. Due to its high usability and
useful reasoning techniques, OWL has been recommended by the World Wide Web Consortium as the
language for the Semantic Web (Horrocks et al., 2010). The expressiveness of OWL and the availability

36 2 Computational design synthesis for supporting conceptual design

of convenient editing tools, such as PROTÉGÉ (Gennari et al., 2003), led to a wide range of application,
also in the domain of engineering design.

Commercial applications in the area of product configuration have reached a high level of maturity, e. g.
for the online configuration of personal computers at Dell (McGuinness, 2010). Based on empirical
studies, Ahmed et al. (2005) developed the design ontology EDIT (Engineering Design Integrated Tax-
onomy) for representing the development process, design rationale and product functions. EDIT is used
for analyzing and indexing text-based documents to support search queries in the product development
process. An overview of research projects for supporting engineering design using ontologies is given in
(Kim et al., 2008).

Advantages of description logics and ontologies can be summarized as follows:

∙ Description logics combine the advantages of semantic networks and frames, regarding the ex-
pressiveness of the knowledge representation.

∙ Description logics are not bound to any visual appearance. Depending on the use case, form-based
or graph-based visualizations can be used.

∙ Large knowledge-bases are already available. Most of them are based on standard languages
and can hence be combined and reused. CYC for example is an ontology that aims to collect
general knowledge and supports a knowledge base for semantic data mining (Foxvog, 2010). The
Ontology Server18 of the Knowledge Systems Laboratory (KSL) at Stanford University supports
collaborative editing and creation of ontologies.

∙ Modeling topological constraints is inherently supported by DL. Dedicated solvers, e. g. SAT-
solvers, are available for solving those kinds of constraint satisfaction problems and identifying
models that satisfy the TBox’ terminology (Horrocks, 2010).

Disadvantages of description logics and ontologies include:

∙ Using mature software tools, the definition of an ontology is intuitively feasible with little training.
However, the formulation of reasoning queries requires a deep understanding of the query language
and expert knowledge of ontologies.

∙ Natively, description logics do not support the link to procedural rules, such as frame-based repre-
sentations. Such an extension has been proposed and the DL languages CLASSIC and LOOM sup-
port the integration of procedural rules (Baader et al., 2010). However, recent implementations
concentrate on the further development of DL-solvers instead of their integration with systems for
procedural rule execution, e. g. graph transformation systems.

∙ Modeling parametric constraints is not a native feature of DL but is feasible. Nevertheless, the
integration of CSP languages and solvers is still subject to current research. An approach for
mapping simple CSPs from an ontology-based representation to CSP-solvers has been elaborated
by Mao et al. (2008).

18Website of the KSL Ontology Server Projects: http://www.ksl.stanford.edu/software/ontolingua/ontology-server-
projects.html

2.3 Overview of knowledge representations 37

2.3.3 Case-based knowledge representation

Humans that are faced with complex problems tend to draw analogies from previous similar solutions.
They do not solely use fundamental knowledge but build on individual experience about previously
solved cases. Problem-solving through analogy-based reasoning is one of the most important human
inference methods (Rude, 1998, p. 84). A fundamental prerequisite for case-based reasoning (CBR) is a
knowledge base that contains knowledge about previous cases. A case consists of a problem definition
together with a situation description in which the problem occurred and the solution that solved the
problem.

In literature, slightly different processes for CBR reasoning can be found (Carbonell, 1983; Kolodner,
1992; Rude, 1998; Luger, 2005). Typically, they accomplish the following four tasks:

1. Find previous cases for similar problems: A previous case is relevant if its solution can be applied
to a new problem. For identifying promising previous cases, solvers search for similar cases. To
do so, they apply the same heuristic as humans would do. They identify the similarity based on
common characteristics. If, for example, two patients have common symptoms and a similar med-
ical history, it is likely that they have the same illness and respond similarly to the same medical
treatment (Luger, 2005, p. 306). To enable efficient search of suitable cases, the underlying struc-
ture of the case repository, i. e. the case-based knowledge representation, has to provide for this
kind of indexing.

2. Adapt previous solution: The solution of a problem usually consists of a process that requires
the execution of operations that transforms a problem state into a solution state. However, these
operations might require modifications to be applicable in a new situation. "Analytic methods,
such as curve fitting the parameters common to stored cases and new situations can be useful; for
example, to determine appropriate temperatures or materials for welding" (Luger, 2005).

3. Apply solution: Although the solution has been adapted, the application of the solution in a new
situation can raise issues that were unknown in previous cases. This may trigger iterations of steps
1 and 2.

4. Evaluate solution and save case: Once a problem has been solved in a new situation, a new case
can be stored in the case repository. To retain valuable information for future use, it is important
to keep track of the success or failure of a solution. This requires an update of the knowledge
base indices. "There are methods that can be used to maintain indices, including clustering algo-
rithms (Fisher, 1987) and other techniques from machine learning (Stubblefield & Luger, 1996)"
(Luger, 2005).

CBR can be seen as a cyclical process of learning from past experience to solve a problem, learning from
that new experience to solve future problems and so forth. The link to (machine) learning is the clear
distinguishing factor from rule- and model-based representations; this approach is also referred to as
case-based learning. The major advances arose in the machine-learning community since CBR systems
can complement expert systems through learning (Aamodt & Plaza, 1994). They allow to continuously
acquire knowledge by gathering and storing more cases. Potential information sources are historical
records or the observation of current operations reducing the effort for the human expert to externalize
expert knowledge (Luger, 2005, p. 308).

38 2 Computational design synthesis for supporting conceptual design

Luger (2005) states that design is an obvious application area for CBR as "aspects of a successfully
executed artifact may be appropriate for a new situation, and diagnosis, where the failures of the past
often recur". In the work of Goel et al. (1996) in the late 1980s, the representation of components and
their composition is used for the indexing of previous designs to provide assistance for future designs,
and has been implemented in the software KRITIK. It combined case-based reasoning for proposing
new solutions with model-based reasoning for the verification of a new solution. A recent application of
this approach is the construction of structural models from unlabeled 2D line drawings (Yaner & Goel,
2007).

An early industrial realization of CBR has been developed by Barletta & Hennessy (1989) with their
system CLAVIER at Lockheed Corporation. At that time there was no theoretical model available to
predict the behavior of composite components during the baking process. Through the assessment of a
human expert, experiences with previous composite parts were recorded in a knowledge base. CLAVIER
proposed the subdivision of complex geometries to prevent an unsatisfying baking process.

For a detailed introduction to case-based design including the representation of design cases, indexing
and retrieving design cases and the range of paradigms for adapting design cases refer to (Maher et al.,
1995).

The advantages of CBR can be summed up as follows:

∙ The similarity to the human problem-solving process makes this approach intuitively understand-
able (Rude, 1998, p. 86).

∙ The ability to include knowledge about historical cases enables the exploitation of existing knowl-
edge sources such as maintenance reports or working protocols. The tedious and expensive for-
malization of expert knowledge can be avoided. Hence, CBR provides an approach to learn from
previous cases for problem solving but also for updating the knowledge base based on the experi-
ence of new cases (Luger, 2005, p. 311). In CBR systems, problem solving and learning are seen
"as two sides of the same coin" (Aamodt & Plaza, 1994).

∙ CBR does not require an upfront model of the problem domain. Instead, it "allows a simple
additive model for knowledge acquisition". However, this poses great challenges to an appropri-
ate representation of cases, a useful retrieval index, and a case adaptation strategy (Luger, 2005,
p. 311).

The following disadvantages of CBR can be observed:

∙ The identification of suitable indexing criteria is difficult. It primarily determines the ability to find
similar cases and hence the quality of solutions proposed. Luger (2005) states that this "can offset
many of the advantages CBR offers for knowledge acquisition".

∙ Cases do not include any deeper theoretical model of the problem domain, such as those that
model-based approaches would. Hence, the knowledge representation itself does not support rea-
soning about cases and support explanation. This might lead to the misinterpretation of cases and
hence to the application of unsuitable solutions (Luger, 2005).

2.4 Related work 39

2.3.4 Reflections on knowledge representations

Retrospectively, a trend towards integrated – or, according to (Luger, 2005), hybrid – knowledge repre-
sentations can be observed. This trend becomes obvious when considering the evolution of the term
expert system.

Rule-based representation is the oldest technique for formalizing domain knowledge. Hence, in the
1960s and 1970s the term expert system was used synonymously with production systems, i. e. rule-
based expert systems. The lack of expressiveness and of an underlying model of the problem domain
limited the scope of these systems to narrow applications. For a comprehensive review of limitations of
first generation expert systems, refer to (Clancey, 1985; Partridge, 1987).

Second generation expert systems attempted to overcome these limitations by combining rule-based
and model-based representations. It can thus be said that expert systems emancipated themselves from
purely rule-based systems. In a later definition by Feigenbaum (Barr & Feigenbaum, 1982), expert
systems are generally seen as systems for problem-solving: "An intelligent computer program that uses
knowledge and inference procedures to solve problems that are difficult enough to require significant
human expertise for their solutions." That is, regardless of the type of knowledge representation, an
expert system is a computer system mimicking the human problem-solving behavior.

Case-based reasoning systems are not subsumed under the notion of expert systems, but they are seen
as a suitable complement for expert systems. They offer the potential to include the functionality of
learning from past experience. Further, CBR allows for the simplification of knowledge acquisition for
expert systems. Often, the search for previous solutions is less tedious than the acquisition of theoretical
or heuristic knowledge for constructing knowledge bases (Althoff et al., 1989).

In closing it can be stated that the combination of knowledge representations in hybrid representations
enables finding better trade-offs between their strengths and weaknesses. Hence, more complex and
difficult problems in a larger scope of application can be solved (Rozenblit & Hu, 1992). In particular,
Dym & Levitt (1991, p. 151) stress the relevance and suitability of a combination of rules, frames and
object-oriented principles for synthesis tasks in design. The significant advantages offered by this kind
of hybrid representation combining model-based and rule-based knowledge representations, as discussed
by Luger (2005, p. 313), motivate this direction to deliver the expected contributions 1 (high efficiency
of object-oriented graph grammars) and 2 (high effectiveness of object-oriented graph grammars). For
this reason, within the remainder of this thesis, CBR is not further regarded in detail. However, it shows
great potential for extending this work towards learning or self-improving design synthesis support.

2.4 Related work

The previous two sections introduced the key concepts of design representations and knowledge repre-
sentations. These are the two dimensions based on which the related state of the art in CDS is structured.
The research is grouped according to underlying knowledge representations while indicating the levels
of abstraction and modeling elements that are used for the design representation. Emphasis is placed
on the scope of application versus the applied knowledge representation to identify the gaps in previous
work and to obtain a deeper understanding of the problem descriptions from Chapter 1.

The terms previously introduced are used in the subsequent sections. In cases where there are deviations
regarding the terminology, the terms used in the respective approaches are indicated in parentheses.

40 2 Computational design synthesis for supporting conceptual design

According to the scope of this thesis, the investigated CDS approaches support the conceptual design
phase through the computational generation of graph-based, or at least graph-like, product models.

2.4.1 Rule-based CDS approaches

The use of rule-based systems for solving architectural design problems can be traced back to Stiny &
Mitchell (1978) who developed a production system that built on shape grammars and generated a set
of visual layouts of ground plans of Palladian villas. Two years later, Gips & Stiny (1980) provided
a uniform characterization of production systems and grammars highlighting their commonalities and
differences, which had a great influence on subsequent research in CDS. Accordingly, graph grammars
are production systems that are based on vocabularies of graph symbols, i. e., nodes, edges, and their
combinations. They are able to define the evolution – or synthesis – of graph-based product models
representing the involvement of engineering knowledge to synthesize design solutions.

Based on the work of Reddy & Cagan (1995), a grammar-based approach for the synthesis of truss
structures was developed by Shea (1997) and later on incorporated in the software tool eifForm (Shea
et al., 2005). In conjunction with finite element simulation, stochastic search methods seek for an
optimal solution of two- or three-dimensional truss structures. The rule set defines the valid operations for
the search method to modify the truss topology and aims to minimize stress, buckling and displacement
while maximizing usage and aesthetic requirements. The formulation and application of rules is depicted
in Figure 2-17. Although this approach is categorized as a shape grammar application, the graph-like
nature of rules and synthesized truss structures is obvious: truss members are considered as edges and
the joints between them are represented as nodes.

 1997 Kr i s t ina Shea 22

2 1 412

3

3 2

4

1 23

4

rule 3 rule 4

rule 1 rule 2
f f f f f f

f f

3

(x,y) (x+dx, y+dy)

-

f

fixed point
f free line

free point

Shape Modification Rule

Topology Modification Rules

1 2

34

1 2

34

rule 5

Size Modification Rule

Figure 3.1: Planar truss grammar

An additional rule to switch an existing connection was added (rule 5) to the grammar

that does not change the determinacy of the structure but alters the topology. The effects of this

rule can be seen in Figure 3.2 where the same topology is formed through the combination of the

dividing rule (rule 1) and the switching rule (rule 5) as resulted from the adding rule (rule 3). The

addition of rules, such as the switching rule (rule 5), provides an additional means of generating

the same type of topology but does not lead to any new topologies that could not have been

generated using only the dividing and adding rules. It is beneficial to keep the grammar as simple

as possible to allow the optimization to guide the design generation in the direction of desirable

topologies. But, additional rules, such as Rule 5, are not detrimental to the grammar and are left

(a) Definition of topology modification rules

 1997 Kr i s t ina Shea 23

in the grammar since they provide a simpler means of obtaining a new topology rather than

applying the reverse rule and then applying a different forward rule.

5

2

1

3

1

2 3 4

5
rule 1

rule 3

4

4

1

2 3

1

2 3 4

5

1

2 3 4

5

rule 5

(a)

(b)

(c)

(d)(b)

Figure 3.2: Example of rule applications

 Expanding the planar grammar to three dimensions following Maxwell’s rule for space

truss layout results in two new topology rule pairs, rules 6 through 9; see Figure 3.3. The rule to

divide a shape, rule 1, can be also used in three-dimensional structures to either reduce the

number of redundant members in the structure or can be supported in the third-dimension,

indicating a support such as the ground or a wall, so that the net effect on the determinacy of the

structure is zero. Another difference between the three-dimensional grammar and the planar

grammar is that the shape modification rule now uses a projection function, z(x, y), to generate

the third dimension of the structure.

(b) Example rule applications

Figure 2-17: Synthesis of planar truss structures (Shea, 1997)

The work by Starling & Shea (2005) also synthesizes graph structures containing geometric properties.
The application area is the synthesis of gear systems that integrates a simulation-driven evaluation of the
systems. A simulation model in the physical modeling language Modelica is generated that is simulated
in the software tool Dymola19 and provides for the assessment of the physical behavior of synthesized
solutions. The rule set contains the knowledge about valid operations of adding, removing and modifying

19Company website: http://www.3ds.com/Dymola

2.4 Related work 41

gears and shafts. It is subdivided into C(reate)-Rules for adding and removing components and P(erturb)-
Rules for parametrically modifying existing components. In the underlying graph-based representation,
shafts are represented as nodes while gear pairs are modeled as edges. This work initially focused on
the synthesis of clockwork mechanisms and has been further developed as a plugin for the commercial
gearbox design tool RomaxDesigner20 (Lin et al., 2009). The knowledge for the gearbox synthesis
was formalized in nine rules distinguished by six topological and three parametric rules. This shows the
general applicability of CDS approaches within a focused scope of application in an industrial context.

MEMS are micro-electro-mechanical systems. The generation of MEMS designs using a shape-grammar-
based representation has been developed by Agarwal et al. (2000). Using a graph-grammar-based repre-
sentation, Bolognini et al. (2007) automatically generate microresonators under the consideration of the
two design criteria of resonant frequency and device size. The synthesis method is called CNS-Burst and
integrates a generate-and-test algorithm (Burst) with a graph-based design representation termed Con-
nected Node System (CNS). The synthesis process is based on five general modification operators. Al-
though these operators were hardcoded in the source code of the software prototype, they are interpreted
as graph transformation rules as they procedurally represent the modification of a graph-based structure.
Their application in a synthesis process results in the generation of systems as depicted in Figure 2-18.
MEMS are multi-domain systems comprised of structural, mechanical and electrical characteristics. This
has been taken into account by providing links to multiphysics simulation for quantitative evaluation of
design performance throughout the synthesis process.

Figure 2-18: Example of a connected-node system (Bolognini et al., 2007)

The previous approaches are mostly based on the combination of graph (or graph-like) grammars, auto-
mated simulation and multi-objective search. However, each application uses a different computational
representation, all including behavior and structure levels to some degree. Each is focused on a specific
scope of application. The integration of the behavior level is achieved through mapping to simulation
tools, rather than synthesizing models that explicitly contain behavior elements, e. g. physical effects.
Only little expressiveness of the knowledge representation is required as the variety of the modeling
elements is small and does not require concepts like inheritance or generalization to define the model-
ing domain. In the respective approaches, nodes correspond to only one specific type of element (e. g.
joints, shafts, resonator primitives) similarly with the edges (e. g. trusses, gear pairs). The knowledge
representation of Bolognini et al. (2007) slightly touches on the integration of model-based knowledge
formalization. Primitive types are defined that encapsulate common characteristics, possible interaction
points (defined as specific port nodes) and are instantiated in the particular MEMS models.

20Company website: http://www.romaxtech.com/RomaxDesigner

42 2 Computational design synthesis for supporting conceptual design

The integration of model-based aspects in knowledge formalization is taken further by Kerzhner& Pare-
dis (2009) who use the formal modeling language SysML to define a hierarchy of components, including
structure, dynamics behavior, cost and the components’ compatibility. This definition is considered a
domain-specific language (DSL) that is built on top of the standard language SysML. Instead of using
this DSL for the formalization of procedural engineering knowledge in graph transformation rules, the
metalanguage MOF is used within the external tool MOFLON. This is disadvantageous in the sense that
a mapping between these languages has to be defined to assure that the grammar complies with the mod-
eling elements defined in the DSL. This approach is successfully applied to generate fluid-power circuits,
where the application of the four design rules uses a random selection of rules. The generated layouts
are based on the standard language SysML.

The graph grammar implementation GraphSynth is an open-source software that served in the past few
years as a platform for multiple synthesis applications. It primarily uses labels and variables to allow
differentiation of nodes and edges. It features integrated search and parametric optimization algorithms;
additional search algorithms can be added as plugins. GraphSynth provides a graphical user interface
for the definition of rules and graphs. It has been applied to the synthesis of sheet metal parts (Patel &
Campbell, 2010), disassembly sequences (Agu & Campbell, 2010) and to applications targeted at com-
putationally supporting the conceptual design phase which are presented in the following paragraphs.

Based on a predecessor of GraphSynth, Sridharan& Campbell (2004) analyzed the function structure of
30 products and derived a set of 69 rules. These rules were defined manually and capture the principles
of decomposing an overall function into a more detailed function structure. To do so, the overall function
is considered as a black box and the rules for adding the necessary subfunctions for translating the input
flows into the output flows are derived. This defines a grammar that can be reused later on to automate
this task for similar design problems. The approach has been validated in an empirical study showing
that students applying this grammar achieved better results than without this kind of tool support.

Kurtoglu & Campbell (2006) have gone one step further and integrated components, i. e. Structure
level, as an additional level of abstraction of the design representation. They implemented an automated
mapping from a function structure to a component structure (termed configuration flow graph) through
the definition of a graph-grammar comprised of a set of 170 rules. The rule set was built based on the
analysis of the dissection of 23 electromechanical products stemming from a web-based design knowl-
edge repository. The authors state that the "design knowledge is systematically extracted and integrated
into a graph-grammar-based framework". However, details of this extraction process remain unclear.
Also in later publications (Kurtoglu et al., 2010), the derivation of rules is not further characterized. It
is hence assumed that the formulation of the rule set was carried out manually.

The two previous approaches adopt the nomenclature of the Functional Basis (Hirtz et al., 2002b)
as a foundation for synthesizing function structures. This ensures consistency and repeatability for their
representation. Another common aspect is the large size of the rule set. The grammars are derived using a
data-driven approach which, in turn, is based on product data from design repositories and solely includes
knowledge about the analyzed class of products. The formalization of established design processes or
procedures from design theory, e. g. for a functional decomposition, could provide for a high degree of
generality. Under the assumption that the grammars were defined manually, the generation process must
be extremely time-consuming. Also, maintenance and keeping the knowledge base up-to-date involves
a considerable effort. Another issue is that expanding the scope of application (integration of Structure

2.4 Related work 43

level by Kurtoglu & Campbell) directly causes an increase in the size of the rule set. This restricts the
scalability of this approach towards a wider range of applications.

Another, yet earlier, graph grammar-based implementation for generating product configurations out of
function architectures is the FFREADA21 algorithm by Schmidt & Cagan (1998) that has been applied
to the synthesis of drill powertrains (Schmidt et al., 2000). This approach encapsulates the formal
design knowledge based on string grammars that is specific to this application. Also, the function and
component entities are string-based but can be interpreted as graphs.

Design Compiler 43 (Alber & Rudolph, 2003) is a general software aiming at solving design synthesis
problems that is based on the software development environment Eclipse22. The knowledge and the
procedure to solve design problems can be formalized in a graph grammar where rules are matched using
subgraph recognition based on regular expressions. The key advantage is the multitude of interfaces
provided to transform design graphs into analysis models, allowing for integration with common tools,
e. g., computer-aided design and simulation. In a recent application, the design of satellites (Schäfer &
Rudolph, 2005) was automated through the synthesis of component-based satellite models based on a set
of application-specific rules.

A grammar-based approach for the synthesis of models of technical processes – according to the Theory
of Technical Systems (Eder & Hosnedl, 2008) – has been developed by Stankovic et al. (2009). Tech-
nical processes are structured as flow-based systems that can be modeled using graphs. The formalism
is not based on graph grammars but on the Backus-Naur form (BNF). BNF is a compact and formal lan-
guage for the definition of grammars that are used to formalize design knowledge to decompose overall
technical processes (considered as black boxes) into their subprocesses and operations. The grammars
do not contain generic knowledge from the Theory of Technical Systems but are tailored for specific
applications. The approach has been validated with the synthesis of a tea-brewing process using ten rules
and a stiffened panel assembly using eleven rules (Stankovic, 2011).

The reviewed rule-based CDS approaches tackle a variety of application domains and show, hence, their
versatility to computationally solve engineering design problems. When comparing the previous rule-
based approaches, the following observations can be made: The scope of application is either narrow,
the rule set small and the generated designs are composed of many elements of the same type, or of a
limited number of different types (Shea; Starling & Shea; Lin et al.; Bolognini et al.). Or, the scope of
application is wider entailing large rule sets and the generated designs are composed of fewer elements of
many different types (Sridharan& Campbell; Kurtoglu& Campbell). Besides the scope of application,
Cagan (2001) relates the directedness of the generation mode ("generation vs. search") to the level
of knowledge ("simple vs. intensive"). From that connection, the conclusion can be drawn that using
directed search techniques, e. g. simulated annealing and simulation (Shea, 1997), supports the goal of
keeping the level of knowledge in the grammar simple, and the number of rules low, as more knowledge
is encapsulated in the search method and optimization model, i. e. objectives and constraints. As a
counter example, Cagan (2001) refers to the coffee maker grammar (Agarwal & Cagan, 1998), a shape
grammar for the generation of coffee makers, that compensates for an undirected generation mode, also
termed "naïve" (Cagan et al., 2005), with a knowledge-intensive grammar composed of 100 rules.

None of the approaches generate models on multiple levels of abstraction. Only Kurtoglu & Campbell
(2006) automatically map from Function to Structure. Instead of generating a model that spans multiple

21Function to Form Recursive Annealing Design Algorithm
22Website of the Eclipse foundation: http://www.eclipse.org

44 2 Computational design synthesis for supporting conceptual design

levels of abstraction, functions are substituted with components, which rather represent a jump from one
level of abstraction to another. From this, a conclusion can be drawn that purely rule-based approaches
cannot cope with the inherent complexity resulting from the synthesis of such integrated product archi-
tectures. This conclusion is aligned with the lessons learned from the first generation of expert systems.
This issue is primarily due to fact that the creation and management of the extensive rule sets that would
be required to generate such complex models is computationally expensive.

Generally speaking, production rules provide a native means to represent transitions, or problem solving
steps, in a state space search (Luger, 2005, p. 310). Thereby, they support a high directedness of gener-
ation, e. g. through coupling elaborate search methods (simulated annealing or genetic algorithms) with
automated simulation, which, in turn, allows to reduce the size of the rule set. Nevertheless, this factor
can only compensate a small part of the issue that with increasing scope the rule set becomes difficult to
handle as discussed for expert systems of the first generation in Section 2.2.4. The aptitude of rule-based
systems to formalize sophisticated search methods and the fact that experts tend to formulate knowledge
in rule-form (Beierle & Kern-Isberner, 2008, p. 73) strengthens the argument that rule-based systems
are useful in applications with limited scope from an engineering design perspective as well (Luger,
2005, p. 310).

2.4.2 Model-based CDS approaches

Matrices are a straightforward data structure for encapsulating engineering knowledge in a simple model-
based representation. They can easily be created using common office software and be analyzed with
specific matrix-based analysis software, as for example the commercial software LOOMEO23. The sim-
plicity of matrix-based modeling and the high accessibility to computational support is an advantage.
However, due to their limited expressiveness, only simple relationships among modeling elements can
be represented. Typically, design structure matrices (DSM) and domain mapping matrices (DMM)
(Lindemann et al., 2008) represent compatibility relations, e. g. between components-components or
functions-components, and can be understood as topological constraints. Representing more complex
concepts, such as multiple inheritance or parametric constraints, using solely matrix editors, e. g. spread-
sheet applications, quickly becomes convoluted for the human modeler. This has little significance for
practical use unless the modeling is supported with suitable graphical user interfaces.

Bryant et al. (2006) developed a software named Concept Generator deriving component-based design
solutions from a predefined function structure that is based on the building blocks of the functional ba-
sis (Hirtz et al., 2002b). A function-to-component matrix, i. e. a DMM, represents knowledge about
the ability of components to embody required functionality. The compatibility between components is
represented in another matrix that is considered a DSM. Based on matrix-algebra, the initial functional
model, represented as a DSM, is converted into a component structure that is subsequently checked for
compatibility between the components. Aside from the different knowledge representation, the scope
of application of this approach is akin to the work in Kurtoglu & Campbell. However, the drawback
of expensive knowledge formalization is mitigated as the knowledge about the function-component-
mapping is extracted from a web-based design repository. In the DSM research community various
similar compatibility-oriented approaches can be found, such as (Hellenbrand & Lindemann, 2008) or
(Gorbea et al., 2008). In contrast to (Bryant et al., 2006), these do not acquire knowledge from a design
repository but require that knowledge is formalized in matrices, which is a tedious task. These research

23Company website: http://www.teseon.com/loomeo

2.4 Related work 45

efforts are not targeted at automatically solving design tasks but at investigating the predefined configu-
ration space of products. For that reason, these approaches are not considered model-based contributions
to CDS and are not further discussed.

Žavbi & Rihtaršič (2009) use topological constraints to represent the interconnectivity between physical
effects (termed wirk elements) that are stored in a manually created library. Their approach aims to
support the generation of working structures using the predefined physical effects as building blocks. It is
implemented in a software called SOPHY24. The constraints are formulated based on the equations of the
physical effects allowing for the automated creation of chains of physical effects. The inputs and outputs
of the physical law equations are concatenated until the translation of a given input variable to a required
output variable is realized. Based on this, potential allocations of physical effects to functions can be
investigated. The focus on an equation-based constraint representation makes this approach principally
independent of a specific engineering domain. However, this also implies the necessity to manually
formalize physical effects from multiple engineering domains in the library. The approach has been
validated with the synthesis of working structures for optical laser devices, household appliances and a
device for removing toll-road stickers (Rihtaršič et al., 2010).

Using the Cambridge Advanced Modeller (CAM) (Wynn et al., 2010) as a platform, the synthesis ap-
proach of Wyatt et al. (2012) aims to support product architecture design. From a general graph-based
description of the variant space, the set of all possible product variants can be generated. A graphical
modeling language is at the designer’s disposal to define a product architecture schema. It can be con-
structed from a set of different components, relations and constraints. This schema can be considered
a metamodel that defines the modeling domain for all derived product models. It implements the key
characteristics of frame-based representations: inheritance, aggregation and multiplicity-relationships.
Further, topological constraints are used to represent the interconnectivity between components. The ap-
proach shows a high degree of generality as the combination of these knowledge representation features
provides an expressive foundation for encapsulating engineering knowledge for a wide range of appli-
cations. It has been validated with the synthesis of architectures of gear trains, aircraft configurations,
vacuum cleaners and engine block mounting. However, the search process, depth-first search, is fairly
simple using elementary transformations of the metamodel.

The Knowledge Intensive Engineering Framework (KIEF) (Yoshioka et al., 2004) aims to bridge the gap
between a subjectively formulated function structure of the desired product and the creation of a product
concept. The identification of suitable physical concepts realizing specific functional requirements is
accomplished by the Qualitative Process based Abduction System (QPAS) (Ishii et al., 1993), which is
a reasoning system that proposes design solutions based on qualitative state transitions. The knowledge
representation is ontology-based; it builds on a cascade of metamodels and organizes abstract-concrete
knowledge in a hierarchical manner. This representation allows integrating general engineering knowl-
edge and specific domain knowledge. Metamodeling as a key factor for enhancing the scope of intelligent
design support has been emphasized by Tomiyama et al. as early as 1989. The underlying design rep-
resentation Function-Behavior-State (FBS) (Umeda & Tomiyama, 1995) constitutes the lowest level of a
cascade of metamodels; it defines the basic modeling elements and the relations among them. Using the
concept of multiple inheritance, higher level metamodels, e. g. a geometric model or a process-interval
model, can make use of the low level FBS representation and define more specific element types such
as depicted in Figure 2-19. Recent work (Komoto & Tomiyama, 2010) builds on that foundation and

24Synthesis Of Physical laws

46 2 Computational design synthesis for supporting conceptual design

takes a systems engineering approach to assign components together with their spatial parameters to the
working principles that are to be realized. Similar as in the work of (Wyatt et al., 2012), an expressive
model-based knowledge representation foundation provides the basis for a wide scope of applications.

Figure 2-19: Cascade of metamodels building on the FBS model (Komoto & Tomiyama, 2010)

All presented model-based approaches claim to be generic regarding the scope of application. Real gen-
erality can only be observed in the work of (Yoshioka et al., 2004) and (Komoto & Tomiyama, 2010).
Bryant et al. and Žavbi & Rihtaršič use a simple knowledge representation that only encapsulates spe-
cific knowledge about the compatibility of specific modeling elements. Instead of having a deep model
of the problem domain, a data-driven approach using extensive libraries is realized. These are either
filled in by hand or derived from a design repository containing dissected products. As no fundamental
design knowledge is contained, widening the scope of application necessarily results in expanding the
knowledge base; this requires a considerable effort. Another drawback of such a limited expressiveness
is the limited ability for considering complex relationships. This issue is reflected in the simplicity of
the validation examples. Wyatt et al., on the contrary, provide a richer representational foundation and
hence are able to consider more complex design problems like in the given validation examples. How-
ever, also here the drawback is that for every design problem an architecture schema, i. e. a metamodel,
has to be defined. As the approach provides for inheritance, problem-specific metamodels could inherit
from metamodels that encapsulate fundamental knowledge. This is envisaged in future work through
integrating metamodels containing abstract, reusable components. How a cascade of metamodels can
encapsulate various levels of knowledge that support both generality and problem-specifity becomes
clear in the approaches based on KIEF. Further, the rich expressiveness of ontologies is used to represent
complex interrelations between physical effects. The KIEF-based approaches have been validated using
realistic, industrial applications from the area of printing devices. To date, the KIEF knowledge base
contains 500 physical effects, 150 relations and 600 parameter types in an efficient, hierarchical structure
(Komoto & Tomiyama, 2012). A recent application (Komoto & Tomiyama, 2012) shows the versatility
and ability to cope with complexity in mechatronic design.

In contrast to the rule-based approaches, the model-based approaches apply simple search methods lead-
ing to an exhaustive enumeration of the possible solutions. These kinds of search methods are straight-

2.5 Conclusions 47

forward to implement and are in theory able to find a global optimum. Hence, they represent a practical
method to deal with small search spaces. With increasing search space, the computational effort of these
brute-force approaches increases tremendously calling for more sophisticated, i. e. more directed, search
methods such as applied by the rule-based approaches. In this respect, too, the KIEF-based approaches
are an exception as they use logical reasoning. For example, they infer physical effects possibly fulfilling
required functionality from the physical concept ontology (Yoshioka et al., 2004). One disadvantage of
purely model-based reasoning is, according to Luger (2005, p. 312), the lack of clarity of the formal-
ized knowledge describing the problem domain. Although KIEF’s reasoning techniques can cope with
complex problems, this disadvantage becomes apparent as the underlying reasoning mechanisms remain
unclear and are used in a black-box manner.

2.5 Conclusions

An overview of the reviewed CDS approaches is depicted in Table 2-1. Based on this, general obser-
vations are given and reference is made to the research issues depicted in the problem description in
Section 1.1. Finally, the research goals are refined to justify and detail the further method development
in this thesis.

Research Issue 1 addresses the lack of efficiency of knowledge formalization. Regarding rule-based
representations, this point accords with the trade-off that can be seen between manageable, small rule
sets (Shea, 1997; Shea et al., 2005; Starling & Shea, 2005; Lin et al., 2009; Bolognini et al., 2007;
Kerzhner & Paredis, 2009; Schäfer & Rudolph, 2005) and a wider scope of application (Sridharan &
Campbell, 2004; Kurtoglu et al., 2010) often leading to large rule sets, which raises the problems of first
generation expert systems. Nevertheless, rule-based approaches natively support the definition of transi-
tions25 in a state space search. Production rules thus provide an efficient foundation for realizing elabo-
rate search methods with a high directedness (Cagan, 2001) that encapsulate additional knowledge about
the solutions’ quality in evaluation methods or target functions. How efficient and flexible knowledge
representations can be achieved becomes apparent when regarding the hierarchical knowledge structure
of approaches (Yoshioka et al., 2004) and (Komoto& Tomiyama, 2010); cascading abstract and concrete
metamodels based on inheritance seems to be the key factor which will be integrated by the researchers
of approach (Žavbi& Rihtaršič, 2009) in their future work. Approaches (Bryant et al., 2006) and (Žavbi
& Rihtaršič, 2009) are based on a flat, database-like knowledge structure that does not allow for reuse
of fundamental knowledge in a hierarchical manner. However, the manageability is considered high as
the proposed data structure avoids an entanglement of knowledge chunks. None of the approaches pro-
vides a systematic formalization support or enables the formalization of evolving knowledge. Instead,
the formalized knowledge is assumed to be already encapsulated in the implementation. In this respect,
the KIEF-based approaches do not provide further indications concerning how the integrated ontologies
can be extended or updated.

The limited scope of application is mentioned in Research Issue 2. This is a critical issue as computa-
tional support for the conceptual design phase requires the design representation to span multiple levels
of abstraction and granularity. The majority of the reviewed CDS approaches focus only on the com-
position of components on the Structure level. Although a decomposition of functions (Sridharan &
Campbell, 2004) and processes (Stankovic, 2011) and a mapping from Function to Structure (Schmidt

25Typically, transitions are called actions in AI literature (Russell & Norvig, 2003). They can be used, for example, to
encapsulate heuristics as used for A* search to find global optima.

48 2 Computational design synthesis for supporting conceptual design

Table 2-1: Overview of rule-based and model-based CDS approaches
Te

ch
ni

ca
l p

ro
ce

ss
es

Fu
nc

tio
n

B
eh

av
io

r
S

tru
ct

ur
e

R
ul

e-
ba

se
d

M
od

el
-b

as
ed

1
S

he
a

19
97

,
S

he
a

20
05

ei
fF

or
m

Tr
us

s
st

ru
ct

ur
es

C
: T

ru
ss

es
, j

oi
nt

s
9

to
po

lo
gy

 m
od

ifi
ca

tio
n

ru
le

s
S

im
ul

at
ed

an

ne
al

in
g

2
S

ta
rli

ng
 2

00
5

P
ar

al
le

l
gr

am
m

ar
M

ec
ha

ni
ca

l g
ea

r
sy

st
em

s
C

: G
ea

r p
ai

rs
,

sh
af

ts
7

C
-r

ul
es

, 1
4

P
-r

ul
es

H
yb

rid
 p

at
te

rn

se
ar

ch
 a

nd

si
m

ul
at

ed

an
ne

al
in

g

3
Li

n
20

09
R

O
M

A
X

D
es

i g
ne

r
G

ea
rb

ox
es

C
: G

ea
r p

ai
rs

,
sh

af
ts

6
to

po
lo

gi
ca

l r
ul

es
,

3
pa

ra
m

et
ric

 ru
le

s
S

im
ul

at
ed

an

ne
al

in
g

4
B

ol
og

ni
ni

 2
00

7
C

N
S

-B
ur

st
M

E
M

S
C

: M
ic

ro
re

so
na

to
r

pr
im

iti
ve

s
5

ge
ne

ra
l g

ra
ph

m

od
ifi

ca
tio

n
op

er
at

io
ns

D
ef

in
iti

on
 o

f
pr

im
iti

ve
 ty

pe
s

M
ul

ti-
O

bj
ec

tiv
e

B
ur

st
 (h

eu
ris

tic
-

ba
se

d
se

ar
ch

)

5
K

er
zh

ne
r 2

00
9

D
S

L-
ba

se
d

gr
am

m
ar

H
yd

ra
ul

ic
 c

irc
ui

ts
C

: H
yd

ra
ul

ic

co
m

po
ne

nt
s

4
gr

ap
h

tra
ns

fo
rm

at
io

n
ru

le
s

S
ys

M
L-

ba
se

d
D

S
L

R
an

do
m

-b
as

ed

se
le

ct
io

n
of

 ru
le

s

6
S

rid
ha

ra
n

20
04

G
ra

m
m

ar
 fo

r
Fu

nc
tio

n
S

tru
ct

ur
es

H
ou

se
ho

ld
 p

ro
du

ct
s

Fu
nc

tio
ns

69
 m

an
ua

lly
 d

ef
in

ed
 ru

le
s

no
t d

et
ai

le
d

7
K

ur
to

gl
u

20
10

G
ra

ph
S

yn
th

E
le

ct
ro

m
ec

ha
ni

ca
l

pr
od

uc
ts

Fu
nc

tio
ns

E
le

ct
ro

m
ec

ha
ni

ca
l

co
m

po
ne

nt
s

17
0

m
an

ua
lly

de
fin

ed
 ru

le
s

N
es

te
d

br
ea

dt
h-

fir
st

 s
ea

rc
h

8
S

ch
m

id
t 1

99
8

FF
R

E
A

D
A

D
ril

l p
ow

er
tra

in
s

Fu
nc

tio
ns

C
: D

ril
l p

ow
er

tra
in

co

m
po

ne
nt

s
S

tri
ng

-b
as

ed
de

si
gn

 ru
le

s*

R
ec

ur
si

ve

si
m

ul
at

ed

an
ne

al
in

g

9
S

ch
äf

er
 2

00
5

D
es

ig
n

C
om

pi
le

r
S

at
el

lit
es

C
: S

at
el

lit
e

co
m

po
ne

nt
s

D
es

ig
n

ru
le

s
fo

rm
ul

at
ed

as

 re
gu

la
r e

xp
re

ss
io

ns
*

no
t d

et
ai

le
d

Te
a

br
ew

in
g

pr
oc

es
s

10
 B

N
F

ru
le

s
S

tif
fe

ne
d

pa
ne

l a
ss

em
bl

y
11

 B
N

F
ru

le
s

11
B

ry
an

t 2
00

6
C

on
ce

pt
G

en
er

at
or

ge
ne

ra
lit

y
cl

ai
m

ed
,

va
lid

at
ed

 w
ith

 th
er

m
al

m

ug
, h

um
an

 p
ow

er
ed

po

w
er

 s
up

pl
y,

 w
al

l
cl

im
bi

n g
 to

y

Fu
nc

tio
ns

C
om

po
ne

nt
s

M
at

ric
es

 fo
r f

un
ct

io
n-

co
m

po
ne

nt
 m

ap
pi

ng

an
d

co
m

po
ne

nt

co
m

pa
tib

ili
ty

E
xh

au
st

iv
e

se
ar

ch
(n

ot
 fu

rth
er

de

ta
ile

d)

12
Ža

vb
i 2

00
9

S
O

P
H

Y

ge
ne

ra
lit

y
cl

ai
m

ed
,

va
lid

at
ed

 w
ith

 o
pt

ic
al

 la
se

r
de

vi
ce

s,
 h

ou
se

ho
ld

ap

pl
ia

nc
es

, d
ev

ic
e

fo
r

re
m

ov
in

g
to

ll-
ro

ad
 s

tic
ke

rs

C
: P

hy
si

ca
l e

ffe
ct

s
E

qu
at

io
n-

ba
se

d
to

po
lo

gi
ca

l
co

ns
tra

in
ts

E
xh

au
st

iv
e

se
ar

ch
(n

ot
 fu

rth
er

de

ta
ile

d)

13
W

ya
tt

20
12

C
am

br
id

ge

A
dv

an
ce

d
M

od
el

er

ge
ne

ra
lit

y
cl

ai
m

ed
,

va
lid

at
ed

 w
ith

 g
ea

r t
ra

in
s,

ai

rc
ra

ft
co

nf
ig

ur
at

io
ns

,
va

cu
um

 c
le

an
er

s
an

d
en

gi
ne

 b
lo

ck
 m

ou
nt

in
g

C
: C

om
po

ne
nt

s
Fr

am
e-

ba
se

d
an

d
to

po
lo

gi
ca

l
co

ns
tra

in
ts

E
xh

au
st

iv
e

de
pt

h-
fir

st
se

ar
ch

14
Y

os
hi

ok
a

20
04

K
IE

F

ge
ne

ra
lit

y
cl

ai
m

ed
,

va
lid

at
ed

 w
ith

 la
se

r
st

er
eo

lit
ho

gr
ap

hy
 m

et
ho

d
an

d
pr

in
tin

g
de

vi
ce

s

Fu
nc

tio
ns

O
nt

ol
og

y,
 c

as
ca

de

of
 m

et
am

od
el

s
O

nt
ol

og
y-

ba
se

d
lo

gi
ca

l r
ea

so
ni

ng

15
K

om
ot

o
20

10
K

IE
F

ge
ne

ra
lit

y
cl

ai
m

ed
,

va
lid

at
ed

 w
ith

 p
ho

to
co

pi
er

Fu
nc

tio
ns

O
nt

ol
og

y,
 c

as
ca

de

of
 m

et
am

od
el

s
O

nt
ol

og
y-

ba
se

d
lo

gi
ca

l r
ea

so
ni

ng

S
ta

nk
ov

ic
 2

01
1

10

Le
ge

nd
: D

: D
ec

om
po

si
tio

n;
 C

: C
om

po
si

tio
n;

 M
: M

ap
pi

ng
; *

:
N

um
be

r n
ot

 s
pe

ci
fie

d

Se
ar

ch
 m

et
ho

d

E
xh

au
st

iv
e

se
ar

ch

Rule-based approaches Model-based approaches

D
es

ig
n

re
pr

es
en

ta
tio

n
K

no
w

le
dg

e
re

pr
es

en
ta

tio
n

Sc
op

e
of

 a
pp

lic
at

io
n

A
pp

ro
ac

h/
Im

pl
em

en
ta

tio
n

A
ut

ho
rs

O
ve

ra
ll

pr
oc

es
s

G
ra

m
m

at
ic

al

ev
ol

ut
io

n

D

MM

S
ub

pr
o-

ce
ss

es

W
or

ki
ng

pr

in
ci

pl
es

W
or

ki
ng

pr

in
ci

pl
es

Su
b-

fu
nc

tio
ns

Su
b-

fu
nc

tio
ns

Ph
ys

ic
al

ef
fe

ct
s

Ph
ys

ic
al

ef
fe

ct
s

C
om

po
ne

nt
s

Su
b-

fu
nc

tio
ns

D D

M M

C C
M

D

M

2.5 Conclusions 49

& Cagan, 1998; Bryant et al., 2006) was achieved by some researchers, product architectures that can
cope with the complexity of design processes of mechatronic products are only generated by the KIEF-
based approaches (Yoshioka et al., 2004; Komoto & Tomiyama, 2010). This is reflected in the FBS
metamodel in Figure 2-19 as it provides the underlying data structure for various design process steps,
e. g. functional decomposition or assignment of physical effects (physical features) to functions.

Only few approaches are based on a computational implementation of established design methods, as
stated in Research Issue 3: Key aspects of the Theory of Technical Systems (Eder & Hosnedl, 2008)
(Stankovic, 2011), functional decomposition according to Pahl et al. (2007) (Sridharan & Campbell,
2004) and an emulation of parts of the design process of VDI 2221 (1987) (Yoshioka et al., 2004;
Komoto & Tomiyama, 2010). Established, paper-based design methods typically claim to be generic
and solution-independent. Their computational implementation could foster the development of more
generic CDS approaches. Further, reusing existing design knowledge, e. g. from design catalogs or text
books, is not widespread. Bryant et al. (2006) import data of dissected products rather than using design
knowledge, e. g. from design catalogs. Žavbi& Rihtaršič (2009) propose a method to transfer functional
models into chains of physical effects that are manually derived from (Koller & Kastrup, 1998). One
good example in this regard is the generation of a "Very Large-Scale Knowledge Base" for KIEF (Ishii
et al., 1995) using text books such as (Hix & Alley, 1958) and thus avoiding building the knowledge
base from scratch. However, the use of this ontology-based knowledge for computational synthesis is
not based on well-known design methods that were intuitively understandable by a designer, but on
logical reasoning algorithms. These are hard to grasp for the human designer and hard to formulate by
the human expert. This is a major drawback of model-based knowledge representations (Luger, 2005,
p. 312). None of the known approaches takes the heterogeneity of the numerous knowledge sources into
account and proposes a method to uniformly formalize knowledge from them.

A physical concept ontology (Yoshioka et al., 2004) that aims to map from function models to physical
concepts has been implemented in the Knowledge Intensive Engineering Framework (KIEF). It has re-
cently been extended to software for system architecting (Komoto & Tomiyama, 2010). Both approaches
are based on representations using the physical value that is subject to be manipulated by a function as
a starting point for searching appropriate physical effects. Wu et al. (2008) introduced a method based
on bond graph modeling that supports the automated generation of dynamic models from component
models. This approach supports the investigation of the dynamic behavior of component networks and,
hence, supports the design process step of the embodiment seen in Figure 3-1.

As stated in Research Issue 4, the use of standard modeling languages has not yet achieved any great sig-
nificance in CDS. The only exception is approach (Kerzhner & Paredis, 2009) using SysML. However,
increasing tool support, intensified teaching activities and the ongoing cross-linking with research activ-
ities from the area of Model-Based Systems Engineering (MBSE) will stimulate a further dissemination
in academia and industry. The advantages for CDS research will be the facilitation of tool integration,
e. g. for simulation, using standard interfaces but also the easier integration in development processes in
industrial applications. To profit from that trend, the adoption of SysML is not necessarily required. Also
self-defined, problem- and domain-specific languages (DSL) that are based on a formal definition, i. e. a
formal metamodel, allow access to these advantages. Regarding the definition as stated on page 3, only
approaches (Kerzhner & Paredis, 2009) (using SysML), (Wyatt et al., 2012; Yoshioka et al., 2004;
Komoto & Tomiyama, 2010) (using DSLs) are considered as being based on formal modeling. As long
as a formal metamodel of a modeling domain is available, models of this domain can be transformed
into a different domain, such as SysML for example. This technique is termed model transformation.

50 2 Computational design synthesis for supporting conceptual design

Solely Kerzhner & Paredis (2009) take advantage of the potential of model transformation as a means
to map between two modeling languages of two different modeling tools and to keep these views syn-
chronized.

Regarding Research Issue 5 (low maturity of software tools), only a rough estimate of the state of the
art can be made that is primarily based on personal impressions and discussions with the respective
researchers. The essential reason for this vagueness is that few papers are written about CDS implemen-
tations in detail and that the assessment of software quality26 does not lie – at least so far – in the CDS
community’s interest. Basically, it can be said that almost no (except 3 and 5) approach reuses exist-
ing software, or software libraries, to achieve a higher level of maturity. A reason for this is certainly,
that integrating available open-source software often implies that the developed software also has to be
issued under an open-source, or compatible, license and the integration of commercial software often
involves considerable costs. However, approaches (Kurtoglu et al., 2010; Schäfer & Rudolph, 2005;
Wyatt et al., 2012; Yoshioka et al., 2004; Komoto & Tomiyama, 2010) are built on software platforms
that are used for multiple research projects and support a wider user and developer base. This is a clear
advantage; development efforts can hence be bundled and the increase of software quality benefits from
the experience and feedback of more users.

Task difficulty

Deep systems

Surface systemsC
o

n
c
e

p
tu

a
l
c
o

m
p

le
x
it
y

Figure 2-20: Deep systems versus surface systems adapted from (Hart, 1982)

As a general observation it can be stated that rule-based knowledge representations constitute an advan-
tageous basis for realizing efficient search and optimization methods. Model-based approaches, in turn,
can cope with higher complexity of the modeling domain. To date, no CDS approach aims to combine
these knowledge representation paradigms to benefit from the respective advantages. To some extent the
current situation in CDS research is similar to the situation in Artificial Intelligence research in the early
1980s. At that time the first generation of expert systems, like MYCIN, showed the potential for com-
putational problem-solving in a narrow scope. The extension towards more general problem domains
was still limited. In 1982, Hart analyzed the status quo of AI research and derived directions for AI
research in the 1980s. He differentiates between surface systems having no underlying representation of
the problem domain and deep systems that encapsulate fundamental knowledge. Their different quali-
tative characteristics showing the relationship between task complexity and conceptual complexity are
shown in Figure 2-20. The term conceptual complexity is not clearly defined and not quantitatively mea-

26According to ISO/IEC 9126 (Jung et al., 2004), software quality can be measured using these characteristics: Functionality,
reliability, usability, efficiency, maintainability, portability

2.5 Conclusions 51

surable but comprises the issues related to the generation and maintenance of knowledge bases. Purely
rule-based approaches having no directed search method – but rather building on naïve generation –
are typically surface systems whereas the deep systems usually incorporate features of model-based
knowledge representations. The central statement of this figure is that as the complexity of the problem
increases the effort related to the conceptual complexity increases exponentially for surface systems but
almost linear for deep systems. Hence, using surface systems is justified for simple problems that can
be solved at a cost of lower complexity by a surface system than by a deep system (Hart, 1982). The
growth of complexity of these systems with an increase of task complexity can be seen in the large rule
sets of (Sridharan & Campbell, 2004) and (Kurtoglu et al., 2010). To conclude, the advantages of
deep systems point the way to expand the scope of application while rule-based systems are essential to
formalize heuristics and to realize efficient search methods. As stated by Sriram (1997, p. 140), a hybrid
knowledge representation could combine the advantages of both systems.

Based on these conclusions, the following chapter is dedicated to the depiction of the method of object-
oriented graph grammars, a hybrid knowledge representation that unifies the aforementioned advantages
of rule- and model-based approaches.

3 Synthesis of product architectures using
object-oriented graph grammars

The aim of this chapter is to introduce the method that leads to the Expected Contribution 1 (high effi-
ciency of object-oriented graph grammars) and Expected Contributiosn 2 (high effectiveness of object-
oriented graph grammars). Based on the conclusion of the literature review and analogies drawn from
the development of expert systems, Research Issues 1 (inefficient knowledge formalization) and 2 (lim-
ited scope of application) are addressed with the development of a hybrid knowledge representation:
object-oriented graph grammars.

First, the definition of the design representation, based on Function-Behavior-Structure, and its relation
to design methodology is given. Next, object-oriented graph grammars are presented, a general approach
for the synthesis of graph-based product architectures. The validation and application of the method to a
specific design problem is given through an example of synthesizing automotive hybrid powertrains and
the analysis of the computationally generated solution space. This chapter concludes with a discussion
of the results.

3.1 Design representation: Function-Behavior-Structure

As discussed in Section 2.2, a top-down transformation of a functional product definition into a component-
based product model is the widespread approach in the classic engineering design literature. The Function-
Behavior-State (FBS) representation by Umeda& Tomiyama (1995) takes these multiple levels of abstrac-
tion into account. The design representation that builds the foundation for synthesizing product archi-
tectures in this work also relates to these three levels of abstraction. However, it interprets them from a
perspective that is closer to the classic design literature. Rather than considering the specific state of the
product behavior, the S-level represents Structure as proposed in a different FBS representation by Gero
(2004): "components of the object and their relationship". For brevity and to prevent from confusion, the
design representation applied here is termed FBS* and builds on the levels of abstraction and the design
process steps to achieve them as defined in the following:

∙ On the Function level, the design problem is formulated and hence the top-down synthesis process
is initialized. The methodology according to Pahl et al. (2007) of characterizing functions by
input/output relations described as verb-noun pairs is followed. To perform a functional decom-
position, three levels of detail are introduced. An overall function is decomposed into high-level
functions. For this step, a high level of contextual knowledge is required. Hence, it is not car-
ried out computationally but by the human designer. The second decomposition step requires the
breakdown of high-level functions into subfunctions. Elements of this third category are modeled
using the set of functional operators and flows from the Reconciled Functional Basis (Hirtz et al.,
2002b) and is carried out computationally.

∙ On the Behavior level, a network of physical effects is synthesized to embody the required subfunc-
tions. They describe the working principles that realize the functions from an idealized, physical
point of view. Design catalogs, such as issued by Koller (1994) and Ponn & Lindemann (2011),

54 3 Synthesis of product architectures using object-oriented graph grammars

provide a large source of knowledge for physical effects. This step provides a valuable starting
point for the development of innovative, new components. A method to automate the transfer
of paper-based engineering knowledge about physical effects into a computable representation is
presented in Chapter 4.

∙ The lowest degree of abstraction is achieved on the Structure level where concrete components
are associated to create product architectures that embody the intended physical effects. Further
design process steps, such as the adoption of a product modularization strategy, are conceivable
but are not in the focus of this research.

Overall

function

High-level

functions

Sub-

functions

Physical

effects

Components Modules Product

C
o

n
c
re

ti
z
a

ti
o

n

E
m

b
o

d
im

e
n
t

Decomposition

Composition

A
llo

c
a

te
 p

h
y
s
ic

a
l
e

ff
e
c
ts

1

2

3

Figure 3-1: Graph-based product architecture based on Function-Behavior-Structure and design process
steps

The significance of this two-step-process of generating a component structure from a functional descrip-
tion via a behavioral level has also been highlighted by Welch & Dixon (1994) as they "believe that
behavior, in terms of physical principles and phenomena, provides a natural bridge between functional
requirements and physical artifacts." The physical effects are, in their work, modeled based on bond-
graphs, which is also the foundation of the method presented in Chapter 4. Instead of modeling the
physical characteristics at this fine level, the presented approach in this thesis is based on the description
of physical effects in design catalogs. If the design task does not require the development of new com-
ponents or behavioral reasoning, this level of abstraction can be skipped. In this case, a direct mapping
from Function to Structure is possible such as in the work of Campbell et al. (2000) and Schmidt &
Cagan (1998). Gero (1990) termed this kind of mapping "catalogue lookup".

To summarize, the design representation defines the foundation based on which product architectures
are synthesized. It is inspired by the classic design literature involving three levels of abstraction. The
design process steps, as depicted in Figure 3-1,

1. decomposition of high-level functions into subfunctions,

3.2 Knowledge representation: Object-oriented graph grammars 55

2. allocation of physical effects to subfunctions (further elaborated in Chapter 4),

3. embodiment of physical effects with components

are executed computationally. While these basic steps are built on known paper-based design methods,
such as functional decomposition (Ulrich& Eppinger, 2008) or matrix-based selection of physical effects
(Koller, 1994), here they are formalized, computationally implemented and automated. The advantage
of basing the approach on paper-based methods is that it is potentially more intuitive to engineers and can
also be applied semi-automated and interactively. Compared to the reviewed state of the art, this approach
offers a richer – and thereby more effective – description of the design representation as it interrelates
multiple levels of abstraction and leads to the Expected Contribution 2 (high effectiveness of object-
oriented graph grammars). This design representation addresses thereby the issue raised by Crawley
et al. (2004) regarding the importance of developing support for exploring product architectures on
multiple levels of abstraction. As further detailed in Section 5.2, this design representation builds on a
formal language based on which approaches for model transformation can be developed, cf. Expected
Contribution 4 (model transformation).

3.2 Knowledge representation: Object-oriented graph grammars

Conceptually, graph grammars are a formal, generative method consisting of a vocabulary and a set
of rules. The vocabulary contains all valid elements represented by nodes and edges, the set of rules
defines transformations modeling how these elements can be created, deleted or modified. Similar to
natural language that is based on words and grammatical rules, it is also possible to develop a language
of designs via formal engineering design grammars. Starting from an initial graph, or starting symbol,
the repeated application of different grammar rules generates new designs. The combinatorial expansion
of all valid rule sequences is termed design language. The advantage of using graphs is the fact that they
can be used as the foundation for almost any kind of formal modeling language in conceptual design
(e. g. SysML diagrams, function models and geometric models like B-Reps). Further, they provide a
strong basis for computational representation and transformation.

Resulting

graph

G
ra

p
h

tr
a

n
s
fo

rm
a

ti
o

n

Compiled

grammar

Initial

graph

Rule

sequence set

C
o

m
p

ila
ti
o

n

Meta-

model

Rule

set

Definition of

vocabulary

Definition

of rules

Definition of

rule sequences

Definition of

an initial graph

Definition Application

Figure 3-2: Definition and application of object-oriented graph grammars for computational design syn-
thesis

This research strictly follows an object-oriented approach and combines it with graph grammars for
design synthesis, Figure 3-2. Therefore, this knowledge representation is called object-oriented graph
grammar. Through this approach, the definition of a grammar is separated from its application. The def-
inition of the graph grammar includes the metamodel and the rule set. The compilation of the grammar
definition results in an executable grammar. Rules within the grammar are not independently executed,

56 3 Synthesis of product architectures using object-oriented graph grammars

they are embedded in rule sequences in which they can be concatenated to sophisticated control struc-
tures. Combining formal design synthesis methods with concepts from object-oriented programming
provides significant advantages. Regarding software development, these quality factors have been by
Meyer (1997). With respect to Research Issues 1 (inefficiency of knowledge formalization) and 2 (lim-
ited scope of application) they can be transferred to CDS research as follows:

∙ Extendibility is the ease of adapting the method and the implementation to a wider range of ap-
plications or completely new applications that includes an extension of both vocabulary and rules.
Since knowledge is always evolving, this point is of particular interest.

∙ Reusability is the ability to define a grammar for multiple applications and reuse the vocabulary
and rules.

∙ Compatibility is the ability to define different sets of vocabulary and rules, e. g. in different domains
such as design or manufacturing, that can be interchanged for different applications or product
generations.

∙ Efficiency means that the formalization and the encapsulation of knowledge are supported in a way
that the demand of resources is as low as possible. This involves computational resources, but
more importantly is to efficiently support the time consuming human task of encoding knowledge.

∙ Ease of use means that the structure of the grammar can be understood as intuitively as possible
and provides the foundation for the factor of extendibility.

The term "object-oriented graph grammar" has to be differentiated from how it is used in computer sci-
ence. In both domains, a graph grammar is used to synthesize graph-based models. "Object-oriented"
refers in this work to the grammar itself as it embodies the key features of object-orientation, e. g. in-
heritance. However, in the work of Ferreira & Ribeiro (2003), the same term refers to the ability of a
graph to represent object-oriented systems, e. g. object-oriented software implementations. In that sense,
an object-oriented graph grammar is able to represent the dynamics of object-oriented systems, e. g. the
behavior of object-oriented software during its execution.

3.2.1 Grammar definition

The definition of a design grammar, here a graph grammar, determines the design representation, i. e. vo-
cabulary and/or building blocks, and the design synthesis process steps, i. e. rules. While the metamodel
contains the building blocks for the synthesis of FBS* product architectures, the rule set encapsulates the
design process steps of decomposing functional models, the allocation of physical effects to functions on
the Behavior level and finally, the embodiment into components on the Structure level.

The definition of appropriate building blocks depends highly on the design problem. For the synthesis
of FBS* product architectures, a general schema of the metamodel is first presented. A more specific
metamodel for the synthesis of hybrid powertrains is then provided in Section 3.3.1.

In contrast to the metamodel, the rule set encapsulates general knowledge for the synthesis of FBS*
product architectures. Hence, procedural knowledge for the design process is formalized here. The
definition of the rule set in Section 3.2.1 is directly applied to the synthesis of hybrid powertrains.

3.2 Knowledge representation: Object-oriented graph grammars 57

Metamodel: Building Blocks

According to ISO 11179 (International Organization for Standardization, 2004), a metamodel is a
"data model that specifies one or more other data models". Hence, the metamodel is an upfront defini-
tion of the modeling elements for the synthesis problem. In this context, it must not be confused with the
term surrogate model, which is an approximation model of a simulation model. The application of graph
grammars requires a modeling space that comprises all graph elements, i. e. nodes and edges that can be
used during the synthesis process. In this approach, the metamodel represents, from a knowledge stand-
point, the building blocks of the engineering design grammar. It covers hence the model-based aspects
of the hybrid knowledge representation. The metamodel provides the foundation for the formulation of
graph transformation rules by specifying node and edge types.

Port types

Flow

Signal

Energy

Mechanical

Rotational

Translational

Electrical

R

T

Chemical

Generalization

Element types

Function

Generalization

Sub-

function

Overall

function

High-level

function

Edge types

Concretization

Decomposition

Flow

RConvert
R

R
RCoupleSupply Structure

realizes:List

multiple:Boolean

swap:Boolean

R
Electrical

machine

realizes = Induction, Biot-Savart

multiple = False

swap = True

Behavior

R
Biot-

Savart

Figure 3-3: General structure of a FBS* metamodel

As this research uses an object-oriented approach, the definition of the metamodel applies analogously
to the definition of classes in object-oriented programming. Similar to objects that are instantiated from
classes, nodes and edges are instantiated from node types and edge types. The concept of inheritance,
which is widely used in programming, provides the foundation for creating a structured definition of
the building blocks. This principle is successfully applied by Komoto & Tomiyama (2010) for defining
a cascade of metamodels and shows the aptitude to systematically capture engineering knowledge in a
"Very Large-Scale Knowledge Base" (Ishii et al., 1995).

In the scope of this research, the metamodel defines a schema of modeling elements, i. e. building blocks,
providing the foundation for synthesizing FBS* product architectures. All elements of an equal level of
abstraction are interconnected based on the exchange of energy, material and signal. Hence, a set of in-
put/output relations, called ports, can be defined in the metamodel. The underlying computational graph
representation requires that ports are modeled as nodes as well. This is further detailed and mathemati-
cally defined in the formal definition of the underlying port-based modeling language in Section 5.2. To
prevent confusion, the term element is used to denote modeling elements having ports and being defined
as element types in the metamodel.

A crucial aspect of this method is the ability to define the valid interconnectivity of building blocks
upfront in the metamodel. This definition is independent from any generative process and remains static

58 3 Synthesis of product architectures using object-oriented graph grammars

during the synthesis process. The concept of ports is introduced in the metamodel, Figure 3-3 through
which compatible elements, on any level of abstraction, can be identified. As introduced in Section 2.3.2,
ports can be understood as topological constraints defining the valid interconnectivity between element
types. The significance and suitability of ports in conceptual design has been emphasized by Liang
& Paredis (2004): "The port connections represent interactions consisting of the exchange of energy,
matter or signals [. . .]. Representing design alternatives as configurations of port-based objects is useful
at the conceptual design stage when the geometry and spatial layout is still ill-defined." The metamodel
definition of the port types adopts the concept of inheritance and reproduces the flow taxonomy from
the Functional Basis (Hirtz et al., 2002b). In the use of ports, the approach taken in this research
extends previous research in three aspects: First, the notion of ports in this research is not bound to any
level of abstraction, e. g. components. They can be seen as a general concept for capturing knowledge
about interconnectivity of elements. Second, due to inheritance, the logic behind a taxonomy of ports
can be captured, such as depicted in the hierarchy of energy flow ports in Figure 3-3; parallel concepts,
e. g. signal flow, can be described in the representation too. Third, ports defined this way provide
the foundation for representing design knowledge in graph grammar rules in a more generic way (as
presented in the following section), leading to a reduced number of rules that remain valid even when
the taxonomy of ports is extended.

In Figure 3-3 the general structure of a FBS* metamodel based on a hierarchy of inheritance is shown:
The top-level element types Function, Behavior and Structure split the metamodel into the three levels
of abstraction. Their descendants (connected with the Generalization arrow) represent more detailed
element types on each of the abstraction levels. The association of port types to element types is achieved
in the metamodel definition. The existence of associated ports is a prerequisite so that elements can be
connected to form a graph. Element types in italic letters are abstract element types and cannot be
instantiated. They can be used to group element types or can serve as property containers for their
descendants, e. g. elements typed Structure. Due to inheritance, all properties of an element type are
transferred to its descendants. These attributes only have to be defined once and become automatically
available to all descendants, e. g. Electrical machine.

The focus of this synthesis method is to generate graph-based product architectures for the conceptual
design phase. Assessing quantitative characteristics of the model requires additional evaluation meth-
ods and is usually considered later in the engineering design process. Hence, representing the general
compatibility – independent of the application domain – of components for the embodiment of physical
effects is the purpose of the definition in the metamodel. To achieve this, the following attributes are
required for the components on the Structure level:

∙ realizes: List of physical effects, which a component is able to embody, e. g. an Electrical machine
can be used for realizing the physical effect Biot-Savart.

∙ multiple: Boolean value defining whether multiple components of a specified type are allowed,
e. g. when False the component Electrical machine cannot be used repeatedly in a product archi-
tecture.

∙ swap: Boolean value defining whether input and output ports can be swapped. If this value is
set to True, the input flow type can become the output flow type and vice versa. Regarding the
Electrical machine, this means that it can function as a generator or as a motor.

3.2 Knowledge representation: Object-oriented graph grammars 59

The representation of subfunctions is, in accordance with the Functional Basis, realized by a functional
operator, e. g. Convert and Supply, linking the input and output ports and representing the respective
flows. The input port is located on the left side, the output port is on the right side.

As a matter of course, the definition of a graph’s building blocks requires the definition of edge types.
Any kind of functional relation between elements that is based on an exchange of energy, material or
signal is specified through respective ports. The connection between ports is modeled using a Flow edge,
Figure 3-3. Further, Concretization edges model the mapping between different levels of abstraction.
Finally, Decomposition edges are used to represent part-of-relationships on either the Function or the
Structure level.

The ability to define possible interconnections upfront in the metamodel, and not in the rule set, is an
important aspect of this method. Thus, this definition is independent from any generative process and
remains static during the synthesis process. This is the key factor for shifting knowledge from the rule-
based representation in graph transformation rules to a model-based representation in the metamodel and
to achieve, by that, a hybrid representation.

Rule Set: Design Process Steps

The set of rewrite rules includes all valid operations for creating and modifying nodes and edges in a
graph, i. e. a FBS* product architecture. Hence, steps for the computational, top-down design process
are defined in the rule set and closely reproduce the design process steps, Figure 3-1, carried out by the
human designer. Such a generic rule set provides a foundation for modeling general design procedures.
Hence, general knowledge that is independent of the design problem (e. g. how to carry out a functional
decomposition,) can be formalized and used for many design synthesis problems that are based on a
FBS* representation.

All graph transformation rules are based on a separation into a left-hand side graph, L, and a right-hand
side graph, R. When a rule is applied to a host graph it searches for the left-hand side and transforms it
into the right-hand side. If the left-hand side is not found, no transformation is carried out. The context K
(L∩R) contains the set of elements that remain static in the rule application and mark the location of the
transformation. Hence, an element on the left-hand side not included in K is deleted whereas an element
on the right-hand side not included in K is added. This set-based definition of a graph transformation is
called the Algebraic Approach to Graph Transformation and the sets K, L and R can also be identified
in the rule schema introduced in Table 3-1. For further details, refer to (Corradini et al., 1997). To
provide a higher flexibility and expressiveness, the definition of rules is enhanced with several concepts
from programming:

∙ Rule parameters are the variable input when a rule is called.

∙ Return values are the result of the rule termination and can be used for further operations, e. g. as
rule parameters for subsequent rules. By default, rules return the result of the rule application. If
a rule does not apply because the left-hand side does not match, False is returned, otherwise True
is returned.

∙ Rule constraints can be used to impose conditions on the matching or the evaluation of attributes.
The applied rule language allows implementing them directly in the rule specification in a pro-

60 3 Synthesis of product architectures using object-oriented graph grammars

Table 3-1: Rule set for the synthesis of FBS* product architectures

K

L R

a:Node, b:Node, z:Edge, left:Boolean, nb_repetitions:Integer

a, c, y, left, nb_repetitions

create chain

z zor

a

1

b

z zor

a

 y

 y
or

2

2

cb

2

Exemplary rule application
Rules

Rule constraints

1 : If same_in is True: Same port type

2 : If same_out is True: Same port type

3 : If type of b is Subfunction, z is of type Decomposition

If type of b is Behaviot, z is of type Concretization

1 : Not matching port type

2 : Type of c has to be in accordance with nb_repetitions

1 : a and b must be of the same type

 K

L R

merge

w

y

x
a

z

by z

4

multiple = False

a xw

1

TBoost

R

R
RCouple

RConvert

RConvert

TBoost

R

R
RCouple

Rule parameters:

left = True

nb_repetitions = 2

2 x create chain

TBoost

R

R
RCouple

RConvert

RConvert

R TConvert

Rule parameters:

left = False

nb_repetitions = 2

create chain

TBoost

R

R
RCouple

RConvert

R
Biot-

Savart

RConvert

TBoost

Rule parameters:

same_in = False

same_out = False

initialize

Rule parameters:

same_in = True

same_out = True

initialize

1 : realizes contains physical effects to be embodied

R
Electrical

machine

R
Biot-

Savart

embody

R
Biot-

Savart K

L R

embody

a a b

c

3

realizes = , ,
1

K

L R

same_in:Boolean, same_out:Boolean

a, b, z

initialize

b

aa

b

oror
1

2

Rule

name

Rule

parameters

Rule return

values

z z 3

1 : Rule constraints : Negative application condition

1

Negative

application

condition

Rule

constraint

Rule

context K

Right-hand

side R

Left-hand

side R

R
Electrical

machine

R
Electrical

machine

R
Electrical

machine
merge

3.2 Knowledge representation: Object-oriented graph grammars 61

gramming language-like manner. For further details on the rule specification syntax refer to (Geiss
et al., 2006).

These aspects provide an added value as they enrich the formalism and provide the basis for formalizing
general procedural knowledge, such as the process steps for the synthesis of FBS* product architectures.
To take these additional features into account, a new rule representation schema has been developed that
is used to represent the rule set in Table 3-1.

The computational design synthesis process starts with a given functional model composed of high-level,
user-defined functions. The two subsequent steps of decomposing high-level functions into subfunctions
and the allocation of physical effects are treated uniformly. They are considered as a chaining process
based on the following rules:

∙ The rule initialize starts the process with respect to the required port configuration of either the
high-level function (decomposition) or the subfunction (allocation of physical effects).

∙ The rule create chain produces a chain of elements until a compatible port configuration is found
for either the decomposition or the allocation of physical effects.

Further, two additional rules are required to assign components to physical effects (associate S to B) and
to combine components that should not have multiple occurrences (merge components).

The rule initialize, Table 3-1, uses the knowledge about valid element combinations already defined
in the metamodel through ports. For this purpose, an element a is sought on the left-hand side that
is neither decomposed into a subfunction nor embodied into a physical effect. A negative application
condition (NAC) represents this fact and is symbolized with a thick cross. With NACs, graph patterns
can be defined that forbid the application of a rule if any of them are present in the host graph. The local
variable a is only valid within the scope of this rule and identifies a high-level function, e. g. Displace
electrically, or a subfunction, e. g. Convert electrical energy to rotational mechanical energy. While the
number of ports is disregarded on the left-hand side, the port configuration in this rule is handled on the
right-hand side in the rule constraints k1 and k2 . They control the search for the new element. The
rule parameters same_in/same_out define whether the input/output ports of the added element have to
be of the same type (or one of its descendants in the port type hierarchy) or not. The effect of setting
the rule parameters is illustrated in the example in Table 3-1. Rule constraint k3 takes control of the
edge to be added: In the case that a is an instance of the element type Subfunction, the edge z is typed
Concretization, otherwise it is typed Decomposition.

After creating the element b, the starting point for the chaining process, i. e. decomposition or allocation
of physical effects, is set. The entire graph on the right-hand side (a, b, z) is defined as return value.
Consequently, those three elements can be forwarded to the rule create chain, Table 3-1. This rule
creates a chain of nodes until an identical port configuration is reached on the subfunction or behavior
level. For this purpose, the node c with a matching port configuration is selected from the metamodel.
As this rule only adds one element, repeated application is necessary. The formulation of rule sequences
allows modeling this repetition.

In addition to a, b, z the following rule parameters are required:

∙ The boolean variable le f t defines in which direction the chaining process is carried out. In the rule
depiction in Table 3-1, le f t = False is assumed.

62 3 Synthesis of product architectures using object-oriented graph grammars

∙ nb_repetitions defines after how many iterations in the chaining process the re-occurrence of a
node type is allowed.

According to constraint k1 , rule 2: create chain only applies when a subfunction or physical effect chain
is not yet finished. Therefore, the marked ports on the left-hand side L do not have to be compatible.
If there are no incompatible ports detected, the left-hand side is not matching and the rule does not
apply. Besides the matching ports, an additional constraint, k2 , for the selection of valid elements from
the metamodel is defined through the parameter nb_repetitions. The type of the new node c might be
excluded from certain node types that were already used. These prohibited node types are stored in a
list.

The rule embody uses the information that is stored in the attribute realizes of the components in the
metamodel. It represents the physical effects that can be embodied and allows for the identification of
component c. Hence, c can be associated to a. The attribute realizes contains single effects but also
effect groups that can represent an unintended behavior b, e. g. friction, that has to be associated to the
component.

The execution of the rule merge aims to find redundant components and to merge them. Based on the
attribute multiple, it is defined for each element type whether multiple occurrences are allowed or not.
Instances of the element type Electrical machine, can be used as an electrical motor (electrical input)
but also as an electrical generator (electrical output). Thus, the attribute swap has been set to True in
the metamodel. Consequently, elements with inverted input/output ports can be merged, as shown in the
example in Table 3-1.

3.2.2 Grammar application

While the grammar definition, Figure 3-2, contains the metamodel and the set of rules, these two compo-
nents of a formal grammar come to life in the grammar application. Making the metamodel and the rule
set executable is achieved through a compilation step. While the grammar definition focuses on element
and port types, at this point, the grammar operates with real data objects.

Rule Sequence and Initial Graph: Design Strategy

Extending the rule definition language with concepts from programming, as presented in 3.2.1, enhances
significantly the expressiveness. Through the ability to set rule parameters and return values, rules can
interact with each other throughout their application. Instead of having closed rules, this approach is
based on a data flow between the application of rules. By default, rules return either the boolean value
True when the left-hand side L matches or False in the case that no rule application is possible. The
interplay of rules is realized in the definition of rule sequences. The ability to formulate sophisticated
rule sequences provides a strong basis to implement problem-specific strategies.

Figure 3-4 depicts a general rule sequence for generating a FBS* product architecture. Based on the
result of the rule application (True or False), the logical structure of a rule sequence can be created
and visualized as a flow diagram. Another advantageous aspect of the separation of grammar definition
and rule application becomes apparent here. While the metamodel, Figure 3-3, contains domain-specific
building blocks, both the rule set and rule sequence are domain-independent and support the synthesis of
any FBS*-based product architecture. This means that for a new application domain only the metamodel
needs to be defined rather than a potentially large set of rules, as found in many approaches.

3.2 Knowledge representation: Object-oriented graph grammars 63

Definition of

initial graph

initialize

create chainTrue

True

False

embody

True

Inter-

pretation

False

False merge False

2

Decomposition of high-level

functions into subfunctions

3
Embodiment of physical

effects with components

True

1

2

3 4

1

Allocation of physical effects to subfunctions

Legend

Decision according

to rule output

Rule

 Rule name

Rule number

merge4

Design process

step
1

Figure 3-4: General rule sequence for the synthesis of FBS* product architectures

The application of this rule sequence is based on the definition of an initial graph, as the general example
in Figure 3-5 illustrates. It provides the foundation on which all subsequent rule applications are applied.
It contains the overall function (OF) decomposed into two high-level functions (HLF). In the next step,
the interplay of the rules 1: initialize and 2: create chain handle both the decomposition process from
high-level functions to subfunctions (SF) and the assignment of physical effects (PE). The assignment of
components (C) to physical effects is achieved by the rule 3: embody that is iterated until all behaviors
are embodied by components.

Up to this point, independent FBS*-modules are created with each of them realizing one specific high-
level function. To create one integrated product architecture, the rule merge looks for redundant com-
ponents and merges them. The advantage of the modular procedure is that promising FBS* modules
can be stored and reused. Further, the functional interrelations between the levels of abstraction become
apparent. For these reasons, a merge of redundant subfunctions is not implemented as the individual
functional modules would no longer be identifiable.

Graph transformation: Synthesizing solutions

The final step of executing a rule sequence is carried out by a graph grammar interpreter (Geiss et al.,
2006) that interprets the directives in the rule sequence definition and executes the transformation, based
on the predefined metamodel and the rule set. The resulting graph provides the basis for evaluating the
quality of the design.

The rule sequence entirely defines the synthesis process. So far, the synthesis of new design candidates is
mainly based on a randomized selection of suitable elements within the rules initialize and create chain.
In accordance with (Cagan et al., 2005), this can be considered as a mainly naïve generation method.
However, due to the definition of compatible port types, a declarative model of feasible solutions is
contained in the metamodel. The application of the rule sequence adapts to the elements and ports

64 3 Synthesis of product architectures using object-oriented graph grammars

Overall

function
T

I1
I2

I3

O

THLF 1 THLF 2 OO

I1

I2

I3

I2

RSF 8RSF 5 R SF 6 SF 7 R TSF 9I2 O
I1

I3I3

RPE 5 R PE 6 PE 7 RPE 8 R TPE 9

I3

O

O

I2

I1

I3

O

RSF 2
R TSF 4

R

R
RSF 3

RSF 1

RPE 2

R TPE 4
R

R
RPE 3

RPE 1

R

R
RPE 3 R TPE 4 O

R TC 4
R

R
RC 3 O

R RPE 3a

I1

I3

I1

I3

R C 6 RC 8 R TC 9 OC 7

I4

RC 5I2

RPE 5 R PE 6 PE 7 RPE 8 R TPE 9 OI2 PE 7a

I3RPE 2

RPE 1

RC 2

RC 1

R TC 4/9

R

R
RC 3

O

I1

I3

R C 6 RC 8C 7

I4

RC 5I2

RC 2

RC 1

Initial graph

3

Resulting

Structure level

1

2

Legend

THLF 2
High-level

function

R TSF 9 Subfunction

R PE 6
Physical

effect

RC 8 Component

I1 Input

O Output

1
Design

process step

3

Legend

THLF 2
High-level

function

R TSF 9 Subfunction

R PE 6
Physical

effect

RC 8 Component

I1 Input

O Output

1
Design

process step

Legend

THLF 2
High-level

function

R TSF 9 Subfunction

R PE 6
Physical

effect

RC 8 Component

I1 Input

O Output

1
Design

process step

Entire product

architecture

Overall

function
T

I1
I2

I3

O

THLF 1 THLF 2 OO

I1

I2

I3

I2

RSF 8RSF 5 R SF 6 SF 7 R TSF 9I2 O

I3I3

O
RSF 2

R TSF 4
R

R
RSF 3

RSF 1

R

R
RPE 3 R TPE 4

O
R RPE 3a

I3 RPE 5 R PE 6 PE 7 RPE 8 R TPE 9 O
I2

PE 7a

I3

RPE 1

O

I1

I3

R C 6 RC 8C 7RC 5I2

RC 2

RC 1

I1

I1 RPE 2

I4

R

R
RC 3

R TC 4/9

Overall

function
T

I1
I2

I3

O

THLF 1 THLF 2 OO

I1

I2

I3

I2

RSF 8RSF 5 R SF 6 SF 7 R TSF 9I2 O

I3I3

O
RSF 2

R TSF 4
R

R
RSF 3

RSF 1

R

R
RPE 3 R TPE 4

O
R RPE 3a

I3 RPE 5 R PE 6 PE 7 RPE 8 R TPE 9 O
I2

PE 7a

I3

RPE 1

O

I1

I3

R C 6 RC 8C 7RC 5I2

RC 2

RC 1

I1

I1 RPE 2

I4

R

R
RC 3

R TC 4/9

Figure 3-5: Example application of the general rule sequence in Figure 3-4

defined in the metamodel. Therefore, changes in the definition of the modeling elements do not trigger
the necessity for changes in the definition of rules and the rule sequence.

Rules 1: initialize and 2: create chain randomly select elements for decomposing a high-level function
into subfunctions and allocating physical effects to subfunctions. This can be considered as a random
walk search. Being a rather slow search method, random walk will eventually find a solution, provided
that the search space is finite, (Russell& Norvig, 2003). As the definition of ports constrain the solution
space, the search can be regarded as constrained random walk. From an algorithmic perspective, the
definition of ports serves three purposes: First, ports reduce, by restricting element compatibility, the
search space significantly. Second, in conjunction with the rule parameter nb_repetitions in rule 2, the

3.3 Validation: Synthesis of hybrid powertrains 65

length of port-based generated chains is finite. Hence, in accordance with (Russell & Norvig, 2003),
random walk will find solutions for both the decomposition of high-level functions and the allocation of
physical effects. Third, as rule 2 only applies if the ports that are checked in constraint k1 are not of
the same type, a clear termination condition is given for the chaining process. This leads to an additional
reduction of the size of the search space. Increasing the efficiency of random walk search methods
by reducing the compatibility of components for configuration tasks has extensively been discussed by
Mittal & Frayman (1989). To conclude, the assignment of ports provides a means to control whether
the search process is either naïve or knowledge-based (Cagan et al., 2005). The more generic the port is,
e. g. using solely energy flow ports, the less constrained the solution space is leading to a higher number
of randomly generated solutions. This increases the chance to naïvely generate novel solutions but raises
issues in terms of evaluating a high number of solution candidates. Best practice in grammars is to
constrain the language to valid solutions and avoid meaningless solutions, e. g. by including knowledge
about the differentiation between electrical and mechanical ports.

This research results in the development of the open-source software called booggie integrating and
adapting the graph rewrite generator GrGen.NET27 (Geiss et al., 2006) and the graph visualization
library Tulip28. It is available to the public as open-source software and is presented in detail in Sec-
tion 5.

3.3 Validation: Synthesis of hybrid powertrains

In the following, the synthesis approach based on object-oriented graph grammars is illustrated and val-
idated through the example of the synthesis of automotive powertrains. The development of automotive
drivetrains is characterized by the need to reduce emissions while maintaining the range of performance.
This pressure led to an introduction of electrical components, e. g. batteries and electrical motors, allow-
ing for new, innovative product functions, such as start-stop systems and regenerative braking. However,
an embodiment of these new functions cannot be achieved as add-ons to existing, conventional power-
trains but requires the re-conceptualization of product architectures. Consequently, a wide spectrum of
hybrid powertrain architectures is emerging, ranging from low electrification, e. g. mild hybrid, to full
hybrid drivetrains using a combustion engine only for charging the battery but not for propulsion (Fuhs,
2009). The range of architectural design alternatives has tremendously increased compared to conven-
tional powertrains. An analysis of existing hybrid powertrain architectures by Gorbea et al. (2008)
showed that 432 architectural alternatives could be differentiated based on state-of-the-art components
in 2008. It is assumed that this number continues to increase significantly with emerging technology
leading to new components and even more architectural options. To cope with these serious challenges,
knowledge-based systems are required to support the design process (Struss & Price, 2003). Once a
product architecture is defined, optimization approaches can be applied to identify design variables such
that the fuel consumption is minimized (Neema et al., 2005). However, to systematically explore the
range of demanded embodiments of required functions, a synthesis method is required that actually gen-
erates alternative product architectures on multiple abstraction levels. The application of the method
presented in Section 3.2 aims to support the conceptual phase of powertrain design by generating design
alternatives.

27Project website: http://www.grgen.net
28Project website: http://tulip.labri.fr

66 3 Synthesis of product architectures using object-oriented graph grammars

Hybrid powertrain architectures are characterized by their high modularity. Due to the limited range of
interfaces for the exchange of energy (electrical, chemical, mechanical rotational), the interconnectivity
of components is high. This results in a combinatorial solution space and strengthens the arguments for
applying computational synthesis methods. Further, the port-based representation of the object-oriented
graph grammar approach is a natural fit. As research in this area is highly dynamic, new functions, phys-
ical effects and components need to be considered. It is therefore crucial to have a synthesis method that
allows for the rapid formalization of evolving knowledge in an efficient way and addresses thereby Re-
search Issue 1 (inefficiency of knowledge formalization). That is to say that a straightforward extension
of the metamodel, e. g. by adding new physical effects, has to be supported. A change of the rule set,
though, is only required if the overall design strategy for the synthesis of FBS* product architectures is
subject to modification.

3.3.1 Grammar definition

Defining the metamodel is the first step in the definition of a formal object-oriented graph grammar. The
definition of port types and edge types within the metamodel presented in Section 3.2.1 remains the same
and does not have to be adapted to this specific application. Hence, only the set of element types has to
be extended (Figure 3-6).

Function Behavior Structure

realizes:List

multiple:Boolean

swap:Boolean

realizes = Combustion

multiple = True

swap = False

realizes = Variable Transformation

multiple = False

swap = False

realizes = Induction, Biot-Savart

multiple = False

swap = True

realizes = Superposition of torque

multiple = True

swap = False

realizes = Variable friction

multiple = True

swap = False

realizes = (Friction + Rolling 1),

(Rolling 2 + Friction)

multiple = False

swap = True

realizes = Electrochemical series

multiple = True

swap = False

Generalization

Sub-

function

R
RClutch

R TWheels

R

R
R

Planetary

train

Power

electronics

R
Combustion

engine

R
Electrical

machine

R TConvert

T RConvert

Regulate

R
RRegulate

R

R
RCouple

Couple

R Convert

RConvert

Convert

RConvert

Overall

function

TBoost

T
Recuperate

electrically

T
Displace

conventionally

T
Displace

electrically

High-level

function

R
Biot-Savart

rotational

R TRolling 1

R
Induction

rotational

T RRolling 2

R
R

Variable

friction

Kirchhoff’s

law

RCombustion

R

R
R

Superposition

of torque

Electrochemical

series

R R
Transmission

ratio

Variable

transformation

Displace

vehicle
T

T

I O

Control

TConvert T Convert T
Induction

translational
T

Biot-Savart

translational

Fuel

cell

1

3

2

Electrical

junction

realizes = Kirchhoff’s law

multiple = True

swap = False

R RFriction

T
Not yet

developed

realizes = Biot-Savart translational,

Induction translational

multiple = False

swap = True

Figure 3-6: Problem-specific element types within the evolving metamodel for the synthesis of hybrid
powertrains

The principal task of a vehicle powertrain is to convert stored energy into a translational movement
relative to the road. The amount of energy converted is controlled by the user of the vehicle by means of
signal flow. Secondary tasks, like traction control or a antilock braking system, are not considered here.

3.3 Validation: Synthesis of hybrid powertrains 67

Hence, interaction between the elements can be reduced to the exchange of energy and the exchange of
a control signal.

The function Displace vehicle is considered as the only overall function. It can be decomposed into
the high-level functions Displace electrically, Displace conventionally, Recuperate energy electrically
and Boost. This decomposition step is not carried out computationally but by the human designer. The
second, yet computational, decomposition step results in the assignment of subfunctions. Elements of
this third category are modeled using the set of functional operators from the Functional Basis (Hirtz
et al., 2002b) while the associated port types define the functional flows.

As energy storage is considered to be outside the powertrain’s system boundary, all overall and high-level
functions include energy input ports. The signal inputs are required for the interaction with the driver.
By means of the input and output elements (subtypes of Control), the system boundary is marked.

The evolving metamodel is shown in Figure 3-6. The initial metamodel, k1 , is extended in two stages:
First, the exploration of the physical effect Electrochemical series allows for an inclusion of the addi-
tional function Convert chemical energy to electrical energy and resulted in an additional component, a
Fuel cell, k2 . In the second extension, the two effects Biot-Savart translational and Induction trans-
lational become applicable for translational applications and allow for two additional functions, k3 .
For example, the German monorail train Transrapid uses these effects for magnetic levitation. However,
components for an embodiment of these new effects in the automotive domain are currently not avail-
able. At this metamodel stage k3 they are potentially embodied with the placeholder component marked
with Not yet developed. As this component embodies the two mentioned physical effects, in- and output
ports can be swapped. Rule definitions remain as presented in Section 3.2 and can be based on different
versions of the metamodel.

3.3.2 Grammar application and discussion of the synthesis results

This section serves two purposes. First, an example synthesis procedure is shown to illustrate the method
and its advantages. Second, to discuss the entire solution space and explore the characteristics of gener-
ated solutions.

The starting point for synthesizing a FBS* product architecture is a functional model that serves as an
initial graph. In the example, Figure 3-7, the overall function Displace vehicle transforms the four inputs
(electrical energy, chemical energy, mechanical translational energy and a control signal) into mechan-
ical translational energy. To define the required functionality more specifically, this function has been
decomposed by the user into the high-level functions Displace electrically, Displace conventionally, Re-
cuperate energy electrically and Boost.

For brevity, only the functions Displace conventionally and Recuperate energy electrically are considered
further, Figure 3-8. Starting with the initial graph, the functional decomposition is accomplished based on
the rules initialize and create chain as depicted in Figure 3-4. While energy recuperation is decomposed
into rather obvious subfunctions, conventional displacement involves a regulation of the energy flow
in the electrical domain and requires therefore auxiliary convert functions. The set of physical effects
in the metamodel provides for a direct allocation to subfunctions. For this reason, only one-to-one
mappings are required to embody the function structure. Hence, the rule initialize directly finds a valid
port configuration, consequently, the rule create chain finds no valid match on the left-hand side and is
not applied.

68 3 Synthesis of product architectures using object-oriented graph grammars

R Convert

Considered in example

Displace

vehicleT
T

I1
I2

I3
I4

O

T
Displace

electrically
T

Displace

conventionally
TBoost OOO

I1

I4

I2

I4

I3 T
Recuperate energy

electrically

I3

RConvertRConvert Regulate R TConvert
T RConvert R ConvertI3

I2 O

T
Recuperate energy

electrically

RConvertR Convert Regulate R TConvert T RConvert R ConvertI3I2 O

I4

RCombustion R
Induction

rotational

Variable

transformation
R

Biot-Savart

rotational
T RRolling 2 R

Induction

rotationalI3

I4

OI2

T RRolling 2 R
Induction

rotationalI3

RCombustion R
Induction

rotational

Variable

transformation
R

Biot-Savart

rotational
R TRolling 1

I4

OI2

R
Electrical

machine
R

Electrical

machine
R TWheels

T RWheels R
Electrical

machineI3

O
Power

electronics

I4

R
Combustion

engineI2

R
Electrical

machine
R

Electrical

machine
R TWheels

I3

O
Power

electronics

I4

R
Combustion

engineI2

T
Displace

conventionally O

I2

I3

I4

T
Recuperate energy

electrically

T
Displace

conventionally O

I2

I4

RConvert

R RFriction

R RFriction

R
Combustion

engineI2 R TWheels T RWheels R
Electrical

machine

I4

O

I3

I3
R

Combustion

engineI2 R
RClutch R TWheels

O

R
Electrical

machine

Serial hybrid

Parallel hybrid

I4

Through the road hybrid

Alternative

solutions

2

1

1

3

I4

initialize1

create chain2

embody3

merge4

Decomposition

of functions

into subfunctions

initialize1

create chain2

Allocation of

physical effects

to subfunctions

Embodiment of

physical effects

with components

Finalize

Power

electronics

R TRolling 1

Figure 3-7: Functional model as initial graph

The embodiment of physical effects into components is based on the specification in the metamodel
within the components parameter realizes, Figure 3-6. Primarily, one component is allocated to one
physical effect. However, based on the parameter realizes the consideration of unintended effects is
also feasible. In the example, an embodiment of the effects Rolling 1 and Rolling 2 with Wheels neces-
sarily involves the presence of Friction in the wheels’ bearings reducing the efficiency of transforming
rotational mechanical energy into translational mechanical energy. The rule embody takes this into con-
sideration when adding the unintended effects based on the Wheels’ parameter realizes = (Friction +

Rolling 1), (Rolling 2 + Friction). This process step can be regarded as a minor contribution to compu-
tationally executing the "Analysis"-step of the FBS framework (Gero, 2004) thats aims at deriving the
"actual behavior" from the component structure. However, using the rule embody, this process step is
limited to solely adapting the product architecture’s topology; quantitative characteristics of the product
remain unconsidered.

The assignment of components might result in the creation of redundant elements. For example, Wheels
are added twice due to the physical effects Rolling 1 & 2. However, one component is sufficient as
defined with multiple = False. Further, in- and output of Wheels can be swapped for the association
with components (swap = True). Hence through the application of the rule merge, redundant Wheels and
Electrical machines are merged and the two individual modules, stemming from the high-level functions
Displace conventionally and Recuperate energy electrically, become one product architecture.

The resulting component architecture corresponds to a classic, series hybrid powertrain and embodies
the required functionality of Displace conventionally and Recuperate energy electrically. Due to the
composition of the metamodel, alternative solutions result from variations in the functional model. In
this example, Figure 3-8, a variation in the functional decomposition results in two more architectures:
a parallel and a through-the-road hybrid. The former represents a standard parallel hybrid architecture,
which lacks an electrical output because no output was defined for the high-level function Recuperate
energy electrically. The latter is a more creative through-the-road solution. Its name stems from the fact
that the mechanical energy at the output of the Combustion engine is propagated through the Wheels back
to itself as can be seen from the loop at the mechanical translational port. As a wheel cannot transfer
energy to itself, a second Wheels element is assumed. Consequently, one could imagine that the front
wheels are driven directly by the combustion engine and the rear wheels apply an opposite torque to
recuperate the energy from the road and convert it into electrical energy. If electrical energy storage is
not considered in the function model, a battery could be included to store electrical energy, e. g. when
braking, and to drive the vehicle electrically by the rear wheels. The fact that the Combustion engine is
constantly applying a torque on the Wheels and the speed regulation is achieved through the electrically

3.3 Validation: Synthesis of hybrid powertrains 69

R Convert

Considered in example

Displace

vehicleT
T

I1
I2

I3
I4

O

T
Displace

electrically
T

Displace

conventionally
TBoost OOO

I1

I4

I2

I4

I3 T
Recuperate energy

electrically

I3

RConvertRConvert Regulate R TConvert
T RConvert R ConvertI3

I2 O

T
Recuperate energy

electrically

RConvertR Convert Regulate R TConvert T RConvert R ConvertI3I2 O

I4

RCombustion R
Induction

rotational

Variable

transformation
R

Biot-Savart

rotational
T RRolling 2 R

Induction

rotationalI3

I4

OI2

T RRolling 2 R
Induction

rotationalI3

RCombustion R
Induction

rotational

Variable

transformation
R

Biot-Savart

rotational
R TRolling 1

I4

OI2

R
Electrical

machine
R

Electrical

machine
R TWheels

T RWheels R
Electrical

machineI3

O
Power

electronics

I4

R
Combustion

engineI2

R
Electrical

machine
R

Electrical

machine
R TWheels

I3

O
Power

electronics

I4

R
Combustion

engineI2

T
Displace

conventionally O

I2

I3

I4

T
Recuperate energy

electrically

T
Displace

conventionally O

I2

I4

RConvert

R RFriction

R RFriction

R
Combustion

engineI2 R TWheels T RWheels R
Electrical

machine

I4

O

I3

I3
R

Combustion

engineI2 R
RClutch R TWheels

O

R
Electrical

machine

Serial hybrid

Parallel hybrid

I4

Through the road hybrid

Alternative

solutions

3

2

1

3

I4

initialize1

create chain2

embody3

merge4

Decomposition

of high-level

functions into

subfunctions

initialize1

create chain2

Allocation of

physical effects

to subfunctions

Embodiment of

physical effects

with components

Finalize

Power

electronics

R TRolling 1

I3
R

Combustion

engineI2 R
RClutch R TWheels

O

R
Electrical

machine
I4

Legend

Rule

 Rule name

Rule number

merge4

Design process

step
1

Legend

Rule

 Rule name

Rule number

merge4

Design process

step
1

Definition of

initial graph

initialize

create chainTrue

True

False

embody

True

Inter-

pretation

False

False merge False

2

Decomposition of high-level

functions into subfunctions

3
Embodiment of physical

effects with components

True

1

2

3 4

1

Allocation of physical effects to subfunctions

Legend

Decision according

to rule output

Rule

Rule name

Rule number

merge4

Design process

step1

R
Combustion

engine
R TWheels

Power

electronics
R

Electrical

machine

O

I3

I2

I1

I4

R
Combustion

engine
R TWheels

Power

electronics
R

Electrical

machine

O

I3

I2

I1

I4

Seite nicht als PDF

drucken!

Figure 3-8: Example synthesis procedure

driven Wheels, makes this concept novel. However, this is not a solution that can be implemented right
away. For example, applying a contrary torque on the wheels braces the powertrain and might result in
increased heat production; further, if the electrically generated torque is too high the combustion engine
might stall. However, the new solution generated might spark further investigation.

Since the set of generic rules is static, new solutions emerge only from an evolving metamodel as de-
picted in Figure 3-6. Hence, the formalization of new knowledge within new element types has a direct
impact on the solution space. This interrelation is shown in Figure 3-9. Since alternative solutions arise
solely from functional alternatives, the development of the solution space can be studied by considering
solutions on the function level. The overall function Displace vehicle is composed of the four high-level
functions. Hence, the number of overall solutions is the multiplication of the number of solutions for the
high-level functions. The total number of solutions is finite because the rule create chain as presented
in Table 3-1 avoids (through the rule parameter nb_repetitions) that infinite energy conversion chains
are created. Thereby, the number of possible energy conversion chains used for the decomposition of
high-level functions can be analytically predicted. The total number of solutions can hence be calculated
through combinatorial enumeration. This kind of analysis is only feasible when the total number of so-
lutions is finite and the number of elements and their valid combinations in the metamodel is sufficiently
small. As discussed in the following, the incorporation of new elements into the metamodel has a sig-
nificant impact on the number of possible solutions for a given design problem. This makes the analysis
of a solution space increasingly difficult for larger metamodels solely by reason of the sheer number of

70 3 Synthesis of product architectures using object-oriented graph grammars

solutions to be considered.

The evolvement of the metamodel reflects the engineer’s evolving knowledge, e. g. due to new techno-
logical developments. Let us assume the following scenario: Research on the physical phenomenon of
Electrochemical series results in the development of a new component: the Fuel cell. Based on this, a
new function for a direct conversion of chemical energy into electrical energy is added (metamodel stagek2). Consequently, the high-level functions involving a chemical energy flow (Displace conventionally
and Boost) benefit from this new technology and increase the number of valid solutions for decomposing
the overall function Displace vehicle from 18 to 50.

Metamodel state

Subfunctions 9 10 12
Physical effects 11 12 14
Components 7 8 9
Total 27 30 35

Displace
conventionally 3 5 14

Displace
electrically 2 2 6

Recuperate energy
electrically 1 1 2

Boost 3 5 20
Drive vehicle 3 x 2 x 1 x 3 = 18 50 3360
*: The number of solutions in the metamodel stages 2 and 3 includes the solutions of the previous metamodel stages.

Number of element types

Total number of solutions* 0

5

10

15

20

25

1 2 3

N
um

be
r o

f
so

lu
tio

ns

1
10

100
1000

10000

1 2 3

To
ta

l n
um

be
r o

f
so

lu
tio

ns

Boost

Displace
conventionally

Recuperate
energy

electrically

Displace
electrically

Drive
vehicle

1 2 3

Figure 3-9: Impact of evolving metamodel on the number of possible solutions

Next, the set of functions in the metamodel are further analyzed. The result is that a function allowing
for a direct conversion between mechanical translational energy and electrical energy provides for a
wide range of new functional alternatives. The two corresponding Convert functions are added. This
increases the number of possible solutions for all high-level functions. The effect of these new functions
is so tremendous because every high-level function has mechanical translation and/or electrical ports and
as they all have a mechanical translational output port (in contrast, the first expansion of the metamodel
from k1 to k2 only affects high-level functions with a chemical port). At all these ports, the new
functions provide additional alternatives for decomposing the high-level functions leading to a raise of
the number of subfunction models realizing the overall function Displace vehicle from 50 to 3360. To
embody these functions, the physical effects Biot-Savart translational and Induction translational can
be identified from a design catalog (Koller, 1994). Components that could be associated to these effects
are unfortunately not yet available and present a great technological challenge. Hence, the study of the
solution space on the functional level can motivate to trigger further research in that area to be able to
provide new technological solutions for hybrid powertrain architectures.

Example solutions that realize all four high-level functions and show noteable characteristics are dis-
cussed in the following. Although providing for a general feasibility – assured through matching flow
ports – these models require a subsequent post processing or interpretation as depicted in the general rule
sequence for the synthesis of FBS* product architectures in Figure 3-4. This interpretation is achieved
based on the identification of solution characteristics that are represented as graph structures. The names
of the solution characteristics used for the subsequent solution space analysis are highlighted in boldface
and are gray shaded in the following figures depicting the hybrid powertrain architectures.

3.3 Validation: Synthesis of hybrid powertrains 71

Solution 6_1_1_1029 in Figure 3-10 only uses modeling elements of the initial metamodel (stage k1).
For various reasons (e. g. high component costs, high weight), the existence of two combustion engines
is questionable and a merge should be taken into consideration. The direct connection of a clutch with
wheels cannot be found in reality; typically, a gearbox and a differential are located between them. As
the functional model does not contain a function for adapting the torque level, these components are not
added. Besides functional considerations, the necessity to add these two components could also arise
from parametric considerations that are omitted for now. For example, the gearbox is required to avoid
engine stalling by adapting the torque delivered by the combustion engine. As discussed earlier, the fact
that the Wheels-element has a connection with itself is noticeable. Splitting up the wheels, such as in the
example in Figure 3-8, results in a through-the-road solution. Further, solution 6_1_1_10 is divisible
into two disjoint architectures by removing the Wheels element.

R
RClutch R TWheels

R

R
R

Planetary

train

Power

electronics

R
Combustion

engine

R
Electrical

machine

Fuel

cell

Electrical

junction

T
Not yet

developed

R
Combustion

engineI2

I3

O

I1

I4

through-the-road

divisible

1Metamodel stage

Figure 3-10: Solution 6_1_1_10

Solution 10_1_3_9 in Figure 3-11 builds on metamodel stage k2 , recognizable by the presence of the
Fuel cell. The arrangement of a Planetary train linked to an Electical machine and a Combustion engine
can be found in classic parallel hybrid powertrain architectures as well. One Clutch is redundant
to regulate the energy flow between Wheels and the Electrical machine and can be omitted. Using a
Clutch here does not violate any physical principles, but controlling the electrical energy supply of the
Electrical machine would be advantageous. Solutions of the stages k2 and k3 can potentially have a
Fuel cell and a Combustion engine in one solution. In these cases it becomes apparent that the flow port
hierarchy should be refined as chemical energy can be further subdivided into hydrogen for the Fuel cell
and gasoline or diesel for the Combustion engine.

R

R
R

Planetary

train

Fuel

cell

T
Not yet

developed

I2

R
Combustion

engine

R
Electrical

machine
R TWheels

I3

R
RClutch

R
RClutch

R
Combustion

engine

R
Combustion

engine

I4

I2

I1

O

classic parallel

hybrid powertrain 2Metamodel stage

Figure 3-11: Solution 10_1_3_9

29The four values of the solution index designate the individual solutions for every high-level function and reads as follows: 6th
solution for Boost, 1st solution for Recuperate electrically, 1st solution Displace electrically and 10th solution for Displace
conventionally.

72 3 Synthesis of product architectures using object-oriented graph grammars

Solution 9_1_1_7 in Figure 3-12 also uses a Fuel cell, i. e. metamodel stage k2 is applied. A clas-
sic serial hybrid powertrain topology can be identified when regarding the composition of Combustion
engine, Electrical machine and Power electronics. The loop between Electrical machine and Power elec-
tronics should be broken up by using two electrical machines, i. e. a split up into engine and generator.
The reason why the element Electrical machine occurs as engine and as generator lies in the fact that the
flag swap is set to True in the metamodel, see Figure 3-6, and allows that input- and output-ports can
be swapped. The mechanical rotational energy at the output of the Combustion engine is then converted
into electrical energy by the first Electrical machine in generator operation. The Power electronics com-
ponent allows to regulate the electrical energy flow that is converted into mechanical translational energy
by the second Electrical machine in engine operation. The second Electrical machine has an electrical
output to feed the recuperated energy into an energy storage device, e. g. a battery.

R

R
R

Planetary

train

Fuel

cell

R
Combustion

engine

R
Electrical

machine
R TWheels

I3

I2

I1

O

Power

electronics

Power

electronics

I4

classic serial

hybrid powertrain

split up into engine

and generator

2Metamodel stage

Figure 3-12: Solution 9_1_1_7

Solutions built on metamodel stage k3 , such as solution 6_0_0_9 in Figure 3-12, can have the peculiarity
of being separated into disjoint architectures. This is due to the fact that Wheels are not necessarily
required to embody every high-level function as the placeholder component Not yet developed can be
used instead. Hence, not all sub-architectures are inevitably integrated in one single architecture through
the merge of Wheels. The future, Not yet developed component is used here to embody the high-level
function of Recuperate energy electrically as it has a mechanical translational input and an electrical
output. It also embodies, together with the Power electronics element, the high-level function Displace
electrically.

Fuel
cell

T
Not yet

developed

I1 I4
Power

electronics

O

I3

R TWheelsR
Electrical
machine

Electrical
junction

I2
R

Combustion
engine

R
RClutch

disjoint

Figure 3-13: Solution 6_0_0_9

The manual analysis of example solutions is considered valuable as it allows to grasp insights into indi-

3.3 Validation: Synthesis of hybrid powertrains 73

vidual solutions and the nature of the solution space in its entirety. However, the big number of solutions
requires an automated analysis and interpretation of the solution space as not all synthesized powertrain
architectures can be analyzed and interpreted by hand. The solution characteristics previously introduced
are used for that purpose. They are applied in the left-hand side of rules that are dedicated for the inter-
pretation of every single solution of the solution space. Table 3-2 shows the results of the analysis and
interpretation of the solution space.

Table 3-2: Analysis and interpretation of the solution space based on solution characteristics

before merge

after merge

10 55.6% 8 25% 750 22.7%

14 77.8% 12 38% 2357 71.2%

0 0.0% 0 0% 172 5.2%

6 33.3% 4 13% 326 9.8%

10 55.6% 8 25% 402 12.1%

16 88.9% 16 50% 736 22.2%

*: The number of solutions in the metamodel stages 2 and 3 does not include the solutions of the

previous metamodel stages.

18 32 3310

Occurrences of solution characteristics

42.3%48.4%35.4%

Number of solutions *

Metamodel stage

Split up engine and generator

Classic serial hybrid powertrain

Classic parallel hybrid powertrain

40.4%40.1%

Disjoint architectures

Divisible

Through-the-road

Electrification ratio
33.6%

1 2 3

Adding new elements to the metamodel has a noticeable effect on the electrification ratio of the generated
powertrain architectures. This ratio is calculated for every solution by dividing the total number of
components by the number of electrical components. Any component that has at least one mechanical
translational port or mechanical rotational port is counted as a mechanical component and the same
with electrical ports applies to electrical components. Hence, an Electrical machine is counted once for
the electrical components and once for the mechanical components. An electrification ratio of 100%
means that all components are purely electrical components. The ratios shown in Table 3-2 are the
average values of all electrification ratios for every metamodel stage. They are distinguished between
the ratio before and after the components are merged. While in stage k1 33.6% of the components are
electrical components, this number rises to 40.1% and 40.4% in the subsequent stages. This is due to
the addition of the electrical components Fuel cell and Not yet developed. The individual FBS* modules
are mainly merged through the merge of Wheels. As they are mechanical components, it is logical that
the electrification ratio increases after the merge step that leads to a decreasing number of mechanical
components.

A "through-the-road"-configuration appears if two Wheels elements are merged having an opposed en-
ergy flow. With a decreasing number of mechanical components, the likelihood for Wheels to appear
decreases. Thereby, a decrease of the occurrence of this characteristic is observed throughout the meta-
model stages.

The fact that in metamodel stage k2 the direct conversion of chemical to electrical energy is possible,
raises the probability of occurrence of Electrical machines; they are another component for integrating
the independent FBS* modules. Hence, dividing a powertrain into disjoint architectures with splitting
a Wheels-element into two Wheels-elements is possible in fewer cases. The reason why the "divisible"
characteristic occurs more often in metamodel stage k3 can be explained with the higher electrification
ratio of the powertrain due to the additional electrical components. The remaining mechanical part of
the powertrain (mostly consisting of a Combustion engine and a Clutch) is detached when removing the

74 3 Synthesis of product architectures using object-oriented graph grammars

Wheels.

All high-level functions have a mechanical translational input- or output-port. In the metamodel stagesk1 and k2 , Wheels are the only component with a mechanical translational port. Hence, they occur
in every independent FBS* module leading necessarily to one integrated solution while merging. By
adding the Not yet developed component in stage k3 , an alternative component with a mechanical
translational port is available. This leads to the occurrence of FBS* modules that cannot be merged with
other Wheels-based modules and, consequently, to the possibility of disjoint architectures.

The occurrence of the classic parallel and serial configurations shows that this approach is able to gen-
erate known, meaningful solutions. With increasing electrification of the solutions, these classic config-
urations become less frequent. This is logical as their indispensable mechanical constituents are getting
replaced with electrical components, e. g. a Fuel cell instead of a Combustion engine.

In metamodel stage k1 , Electrical machine is the only component that can realize an energy conversion
from or towards the electrical energy domain. Alternative components for that purpose are added in stagek2 and k3 leading to a decreased occurrence of Electrical machines. Hence, the number of cases that
necessitate a split up of electrical engine and generator becomes smaller.

3.4 Discussion

To efficiently support the conceptual phase of the innovation process, methods and tools are required that
are based on a general and domain independent design methodology allowing product synthesis on multi-
ple levels of abstraction, but such implementations are rare (Erden et al., 2008; Eigner et al., 2012). The
method presented in this chapter contributes to advances in this area since it introduces an integrated de-
sign representation for conceptual design based on the levels of abstraction Function-Behavior-Structure.
It’s combined with an object-oriented graph grammar approach capable of automated synthesis of prod-
uct architectures on all levels. Further, extensions to conventional graph grammar methods were devel-
oped drawn from object-oriented programming. Thus, the manageable complexity of generated product
architectures is higher with regard to the state of the art in CDS.

The definition of the design representation is based on the definition of the metamodel. It contains the set
of building blocks and their interconnectivities, termed ports, and their logical structure using the concept
of inheritance. Thus, the metamodel enables the formalization of declarative engineering knowledge
stemming from the engineer’s expertise and including knowledge from design catalogs in a model-based
representation. It contains the modeling elements that are required to solve a specific design task. Rules
can be defined in a generic way using the metamodel, especially the port types defining a taxonomy of
flows. Hence, general and domain-independent design procedures, such as a functional decomposition
process, can be translated into a rule-based representation. Inclusion of specific knowledge can also be
taken into account; for example, the definition of the embodiment of physical effects through components
is not based on a generic mapping but rather on a fixed mapping defined in the metamodel.

The approach is validated through the synthesis of hybrid powertrains. The generated architectures show
one of the key benefits of using the presented method for the synthesis of FBS* product architectures.
Although the solutions may not be entirely meaningful, e. g. redundant components, the concept of ports
ensures that the basic physical compatibility is guaranteed. Hence, the proposed solutions provide a
trigger for rethinking conventional solutions. This is a crucial contribution to the ideation of innova-
tive solutions in the conceptual phase. In analyzing a generated, novel product architecture and trying

3.4 Discussion 75

to understand the product architecture’s inner workings, the designer is stimulated to think outside the
box. Admittedly, a manual interpretation of 3360 potential solutions cannot be expected from a human
user. A special rule set dedicated to the analysis and interpretation of solutions to automate the pro-
cess is developed. It includes rules for detecting solution characteristics requiring further corrections or
identifying solutions being worth further investigation, e. g. retrieving special configurations, such as
through-the-road concepts. Especially for powertrains implementing all four high-level subfunctions, a
rule set for the subsequent interpretation of the generated product architecture provides added value as
these solutions are larger and a manual approach could be time-consuming.

The metamodel, as a repository of declarative knowledge, provides a rich foundation for the rule-based
formalization of procedural engineering knowledge. Combining model-based and rule-based knowledge
representations into one hybrid representation allows for an increase of the scope of application (Sriram,
1997).

As long as a specific metamodel respects the general structure, e. g. the FBS* levels of abstraction, the
set of only four generic design rules can be applied to synthesize solutions. This is a core contribution of
this approach since it circumvents the issue of exhaustive rule formulation. Through this flexibility, the
approach combines advantages of a generic and systematic design method that is applicable to a wide
range of design problems.

As engineering knowledge is constantly evolving, e. g. due to the development of new technologies,
knowledge formalization is always needed and often a bottleneck in applying engineering grammars. The
presented approach supports this issue through the concept of inheritance. It supports extendibility by
enabling an extension of the inheritance hierarchy in the metamodel without creating incompatibilities.
Further, rules defined on an abstract element type level, or involving the use of ports, remain valid even
when elements are added, modified or deleted, as shown in Section 3.3.2.

Given the results obtained with the validation study, it seems fair to conclude that the Expected Contri-
butions 1 and 2 have been achieved. Contribution 1 delivers an increase of efficiency in the knowledge
representation, specifically in terms of:

1. A small, generic rule set remains manageable due to the definition of a metamodel to define a wide
solution space.

2. A clear and simple process is developed for the definition and application of object-oriented graph
grammars (cf. Figure 3-2).

3. The generic rule set and the flexibly expandable metamodel support the formalization of evolving
engineering knowledge.

4. The application of a computationally efficient graph transformation library allows to generate and
analyze high numbers of solutions in reasonable time. An extension towards more elaborate search
and optimization algorithms is feasible, as discussed in (Jakumeit et al., 2010) and could be subject
to future work. For a quantitative assessment of the computing time of the presented synthesis
approach, refer to Section 5.4.5.

Object-oriented graph-grammars are a hybrid knowledge formalization that can serve as a formal knowl-
edge foundation for synthesizing graph-based models. They are, by that, an effective representation to
support a wide range of applications leading to the achievement of Contribution 2 (high effectiveness of

76 3 Synthesis of product architectures using object-oriented graph grammars

object-oriented graph grammars). Thereby, this contribution aims to achieve Research Goal 2 (gener-
ate known and new solutions), namely the generation of known and new solutions. Known powertrain
characteristics, e. g. through-the-road, parallel, serial, such as they are described in known powertrain
architectures by Gorbea et al. (2010) occur in various solutions in numerous combinations. New and
controversial solutions that merit closer consideration occur as well. This result also corroborates the Ex-
pected Contribution 5 regarding the generation of human-competitive solutions and is further discussed
in the industrial case study in Section 5.5.

Finally, it only remains to reflect on the developed approach with respect to the quality factors of object-
oriented programming that were interpreted from a CDS perspective in the beginning of Section 3.2.
The upfront definition of the modeling space by means of a hierarchical metamodel, contributes to the
goal of extendibility by enabling the subsequent addition and detailing of elements in a structured way.
Moreover, this kind of type hierarchy is intuitively understandable and increases the ease of use. Due to
the concept of inheritance, the definition of overlapping or redundant attributes or elements is abolished.
Further, the class taxonomy of the metamodel supports the automated creation of generic rules but also
the definition of knowledge intensive rules that apply not only to one type of element but also to all of
its subtypes. These features facilitate the encapsulation of engineering knowledge and support hence the
goal of efficiency. The separation of representation and program execution enhances the reusability of
metamodels for multiple applications and domains. Moreover, parts of the metamodel can be detached,
further detailed and reintegrated. The compatibility of different metamodels and rule sets can be assured
as long as naming conventions, e. g. for functional modeling, are maintained. This comprises in particular
rules that reason on different levels of granularity.

Up to now, quantitative aspects of the design representation and generation are disregarded. The explo-
ration of the solution-space is based on a constrained random walk search that can be considered as a
random- and port-based search process seeking for valid input and output configurations. In the pre-
sented example, this approach is appropriate because the function set consists of elements that can be
entirely defined through their energy- or signal-flow ports; it is in the very nature of powertrains to con-
vert energy flows. However, as there is no explicit definition of which physical effect can be allocated to
which subfunction, unsatisfactory results might arise if the nature of the problem domain is less energy-
flow-oriented. Further, if the metamodel consisted of a wider spectrum of functions, this approach would
create a high number of solutions requiring interpretation, which demands efficient evaluation meth-
ods. In theory, this can be achieved taking the presented approach further for analyzing the solution
space. This post-processing of the solution space can be taken further to repair or enhance solutions.
Nevertheless, as shown with the impact of the evolving metamodel, the number of solutions increases
dramatically with every added element in the metamodel. For this reason, a more purposeful selection of
physical effects is required that does not only compare the flow inputs and flow outputs of subfunctions
and physical effects. An approach to tackle this issue based on the automated formalization of physical
effect is presented in the following chapter.

4 Automated allocation of physical effects to
functions using abstraction ports

The method presented in the previous chapter is an object-oriented graph grammar that enables the
efficient definition of generic design rules based on valid port configurations. These rules are defined
in a problem-independent manner and allow the formalization of the process step for the allocation of
physical effects to functions within two rules. The application of these generic rules is based on the
definition of a flow port hierarchy in the knowledge repository and a set of physical effects that are
formalized from design catalogs. The knowledge repository is realized as a metamodel defining the set
of building blocks. It defines the modeling elements that are available in the FBS* domain and can be
instantiated for synthesizing product architectures (Helms & Shea, 2012). For this approach, ports are
crucially important and their significance has been discussed in Section 2.3.2.

The synthesis process that is based on flow ports, as depicted in Figure 4-1, compares the input and
output ports of a function to the input- and output-ports of physical effects and searches in the knowledge
repository to identify possible candidates. The principal advantage is that this process complies with any
kind of physical effect in the repository that is based on the notation of flow ports. Hence, seeking
compatible input and output port configurations ensures general compatibility, even for new physical
effects resulting out of technological advancement. However, this selection process is purely based on the
compatibility of the energy, material or signal flow ports. The compatibility of the functional operators,
e. g. Convert, Store, Supply (Hirtz et al., 2002b), with the characteristics of physical effects is not
considered and might result in an expansion of the solution space that makes the identification of good,
or even optimal, solutions difficult. The effect of the Coriolis force, for example, has an appropriate input
and output characteristic of its flow ports to be allocated to the function Convert translational mechanical
energy to rotational mechanical energy. Additional features of this effect, though, such as the possibility
to modulate the energy conversion through a signal input, are not considered.

Technische Universität München
Product development

© 2010 Prof. Shea Hms / 2010 / 2

T R
R

R

R T R
R

R

Convert Convert Store Regulate

Coriolis
force

Legend

Allocation of

physical effects

Flow

Knowledge
repository

R

Design
catalogs

Formalization

Figure 4-1: Allocation of physical effects to functions based on flow ports

Design catalogs (Ehrlenspiel, 2009; Koller, 1994; Ponn& Lindemann, 2011; Koller& Kastrup, 1998;
Roth, 2001) provide a large source of knowledge about physical effects. The method presented in the
previous chapter solely uses the formalization of physical effects based on flow ports with the above-
mentioned drawbacks. Integrating the selection matrices included in the design catalogs would ensure
compatibility between functional operators and physical effects. However, this would also result in a

78 4 Automated allocation of physical effects to functions using abstraction ports

knowledge base that is both inflexible and difficult to maintain and has been seen in previous work
(Bryant et al., 2006; Žavbi & Rihtaršič, 2009).

Technische Universität München
Product development

© 2010 Prof. Shea Hms / 2010 / 3

R Convert

Knowledge
repository

Port-based Reconciled Functional Basis

Pahl & Beitz Hundal TRIZ

Port-based abstraction layer for physical effects

Koller Roth …

R
Biot-

Savart

GY

R Convert

GY

Abstraction

ports

Example:

E
m

b
o
d

im
e

n
t

A
llo

c
a

ti
o

n

TR

R
Biot-

Savart

GY

R Convert

GY

Abstraction

ports

TR

Figure 4-2: Allocation of physical effects to functions based on a port-based knowledge repository

According to Research Issue 3 (lack of reuse of design knowledge), the heterogeneity of the numerous
knowledge sources calls for the development of a method that allows to systematically express and clas-
sify physical effects at a uniform layer of abstraction. The gap between Function and Behavior could thus
be bridged. This allows for standardization, i. e. solving compatibility issues between different design
catalogs, supports the uniform formalization of evolving physical effects and provides for a mapping to
the established functional modeling. For these purposes, the notion of abstraction ports is introduced.
It also provides for a uniform classification regardless of the energy domain, which is of high benefit
for the synthesis of product architectures consisting of multiple energy domains. Analogous to flow
ports, which represent the conceptual compatibility of flows on the same level of abstraction, abstraction
ports represent the compatibility between subfunctions and physical effects and provide for increased ef-
ficiency when searching computationally for appropriate physical effects. The essential objective of this
chapter is to introduce a method that reuses knowledge from design catalogs and allows to formalize it
in a uniform way based on the graph-based representation introduced in Chapter 3. Thereby, this chapter
leads to the Expected Contribution 3 (formalization of design catalogs).

4.1 Method context

The methodology of bond graphs is a form of object-oriented physical system modeling developed by
Paynter (Paynter, 1961) to model dynamic systems. The consideration of different energy domains
(e. g. mechanics, hydraulics, electronics) is provided based on a uniform modeling concept. Providing
a general domain-spanning set of elements, it supports a way to unify all heterogeneous, paper-based
knowledge sources by defining a unified abstraction layer for physical effects.

Hence, the presented method aims to assign abstraction ports to physical effects considering solely the
nature of the exchange of energy. Based on the analysis of physical effect equations, the future catego-
rization of new effects that have yet to be formulated or discovered is supported.

Figure 4-2 illustrates the general approach within the context of the design representation presented
above focusing on the embodiment of subfunctions into physical effects. Both the port-based Reconciled
Functional Basis and the port-based abstraction layer for physical effects can be considered as a for-
malization method that provides uniform access to either functions or physical effects for computational
design synthesis.

4.2 Bond graph elements – the foundation for abstraction port types 79

Table 4-1: Domain-specific state variables

The core contribution of this method is the assignment of abstraction ports, as depicted in the example
seen in Figure 4-2: The assignment of flow ports to the subfunction Convert rotational mechanical en-
ergy to electrical energy and to the physical effect Biot-Savart follows the general functional modeling
methodology (Pahl et al., 2007; Ehrlenspiel, 2009; Ponn & Lindemann, 2011). The abstraction ports
ensure that the physical effect is conceptually able to fulfill the required functionality. This is exempli-
fied through the ports GY and TF. Convert requires that a physical effect has to be associated with one
of these abstraction ports. This is the case for the physical effect Biot-Savart providing the port GY. So
far, abstraction ports only consider concepts for the exchange of energy and are derived from bond graph
elements. They are introduced in the following section along with their function-allocating ability.

Although abstraction ports apply to all energy domains, the examples in this thesis concentrate on the
mechanical translational, mechanical rotational and electrical domains.

4.2 Bond graph elements – the foundation for abstraction port types

Modeling physical systems with bond graphs is based on a flow of energy. The energy flow between two
elements has the physical dimension of power, being the product of the two variables effort e and flow f .
The variables momentum p and displacement q are the time integrals of effort and flow. Each of these
generalized (i. e. state) variables has a domain-specific significance, as depicted in Table 4-1.

The general relationships between the state variables can be illustrated using the tetrahedron of state
(Paynter, 1961), Figure 4-3. The different mathematical operations describing the relationships between
effort and flow variables constitute the different types of bond graph elements. These can either be ele-
ments of a single energy domain (one tetrahedron) or elements mapping potentially from one to another

Figure 4-3: Tetrahedron of state, adapted from (Paynter, 1961)

80 4 Automated allocation of physical effects to functions using abstraction ports

Table 4-2: Bond graph element and functional operators

domain (two tetrahedrons), cf. Table 4-2. Consequently, the equation schemes stand for the respective
bond graph element types and allow for their identification. Primarily, the relation between the state vari-
ables – either integrative or derivative – is important. Hence, any other physical characteristics linking
effort, flow and their respective time-integrals are lumped in the parameter k.

Only the bond graph elements that are suitable for the classification of physical effects from design
catalogs and the assignment of abstraction ports are briefly presented below. Their ability to be allocated
to functions is depicted as well. For a comprehensive introduction to physical systems modeling with
bond graphs, refer to (Broenink, 1999).

∙ Resistor (R): The resistor represents an irreversible dissipation of power. Normally, power is dis-
sipated to the surroundings in the form of heat. The relationship between effort and flow is direct
and linear, i. e. the effort is proportional to the flow. Examples are dampers, frictions and electric
resistors.

∙ Capacitor (C): A capacitor represents the storage of energy as a displacement, being the time
integral of the flow. The C-element is energy conservative. This means that in an ideal C-element,

4.3 Assignment of abstraction ports to functions 81

energy can be stored and subsequently released in exactly the same amount. Examples are springs
and capacitors.

∙ Inertia/Inductance (I): I-elements represent inertia in mechanical systems and inductance in elec-
trical systems. This element represents the storage of energy as momentum. Like C-elements,
I-elements are energy conservative too. Examples are masses, inertias and inductors.

∙ Transformer (TF): Transformers describe a relationship (based on the modulus contained in k)
between two efforts or two flows. These can be within the same domain, or of two different
domains and are represented with two tetrahedrons of state. The efforts are proportional to each
other, as are the flows. The transformation can be within one domain, e. g. lever, or between two
domains, e. g. winch.

∙ Gyrator (GY): While transformers describe a pair-wise relation of efforts and flows, gyrators relate
an effort on the one side (left tetrahedron) to the flow on the other side (right tetrahedron) and vice
versa, based on the gyrator ratio contained in k. Most of the realizations of gyrator effects represent
a domain transformation, such as an electric motor or generator.

4.3 Assignment of abstraction ports to functions

The assignment of flow ports is in line with the functional modeling paradigms (Pahl et al., 2007;
Ehrlenspiel, 2009; Ponn & Lindemann, 2011) and represent a flow of energy, material or signal as de-
tailed earlier (Helms et al., 2009). The assignment of abstraction ports, in contrast, is based on functional
operators. The procedure for the assignment of abstraction ports is to first determine all unsuitable func-
tional operator classes and all of their subtypes for one of the following reasons:

∙ The primary classes Signal and Support do not represent a flow of energy.

∙ Although Branch-, Channel- and Channel-based functions can be applied on energetic flows, the
exchange of energy is a subordinate characteristic. These functions are primarily described with
their flow port characteristics.

∙ The secondary level operator Actuate can be used to model the commencement of a flow. It does
not represent an exchange of energy but rather the act of switching a flow on or off.

∙ The tertiary operators Shape and Condition represent indeed an exchange of energy. However, due
to their potential complexity, the embodiment requires a network of bond graph elements and is
therefore out of scope and should be considered in future work.

For the remaining operators of the Functional Basis (Hirtz et al., 2002b), it was possible to manually
allocate the appropriate bond graph element types, as depicted in the last column of Table 4-2. For ex-
ample, the function Decrement is described as: "To reduce a flow in a predetermined and fixed manner".
The nature of bond graph R- and TF-element types, allows them to reduce the magnitude of an energy
flow. By choosing the magnitude of the R-element’s constant, k, or the modulus of the TF-element, the
reduction of the flow can be set.

Some functions require the presence of a modulating signal port, e. g. Increase: "To enlarge a flow in
response to a control signal". This aspect presents an additional requirement on the physical effect for
the embodiment and results in the additional assignment of an M port. A special case in that context is

82 4 Automated allocation of physical effects to functions using abstraction ports

the operator Convert: "To change from one form of a flow [. . .] to another". There is no specification
whether the energy conversion has to be embodied in a fixed manner or whether the ratio effort/flow can
be modulated with a signal input. Hence, in terms of the abstraction portsassignment, two versions are
introduced: One with and one without an M port, see Table 4-2. Finally, the operator Convert can be
embodied based either on GY- or on TF-elements. Hence, both abstraction ports are assigned.

Technische Universität München
Product development

© 2010 Prof. Shea Hms / 2010 / 19

4. Determine bond
graph element

𝑒~𝑞

𝑒 ∥ 𝑞 C
assign

C-port

3. Isolate state
variables

𝑀 ∼ 𝜑

Torque 𝑒
Angle 𝑞

2. Identify state
variables

Torque
Constant

Angle

𝑀 =
𝐺 ⋅ 𝐼𝑡
𝑙

⋅ 𝜑 ----------

1. Select effect to
be analyzed

e.g. Torsion

𝑀 =
𝐺 ⋅ 𝐼𝑡
𝑙

⋅ 𝜑
Koller

R R

C

Torsion

R R Torsion

R R

C

Torsion

R RTorsion

Example:

Figure 4-4: Example assignment of a C-PORT

4.4 Assignment of abstraction ports to physical effects

4.4.1 General approach

The assignment of abstraction ports to physical effects using bond graph elements is based on the manner
in which the occurring state variables in the given formula are combined. This means that in each physical
effect formula, only the specific state variables are relevant for the allocation of an abstraction port. Using
the physical effect Torsion as an example, 4-4 shows the proposed approach for assigning the formulas of
elementary physical effects to a corresponding bond graph element. The approach includes the following
steps:

1. Select the physical effect to which abstraction ports are to be added from a design catalog, here:
(Koller, 1994).

2. Identify state variables in the equation. In the case of Torsion, the variables torque and angle can
be identified. The different uses of physical variables are matched by a conversion table.

3. Isolate state variables; other parts of the formula irrelevant for the allocation process are ignored.

4. Match bond graph element based on the nature of the equation format of the identified state vari-
ables and assign abstraction port.

By considering which of the state variables are present in a physical effect formula and by which equa-
tion scheme they are related, it is possible to allocate the physical effect to the corresponding bond graph
element. This last step of identifying the bond graph element, i. e. the assignment of a abstraction port,
is schematically depicted in Figure 4-5. The special case of three state variables is considered in the fol-
lowing subsection. In the next step, the two state variables are compared to all the possible combinations
defining a bond graph element type. In the case that these variables have a parallel orientation – which is
only the case if they originate from the same energy domains – a direct allocation of the ports R, C and I

4.4 Assignment of abstraction ports to physical effects 83

Technische Universität München
Product development

© 2010 Prof. Shea Hms / 2010 / 17

Special Case 2

Special Case 1

2 state
variables

𝑒~𝑓

𝑒~𝑞

𝑓~𝑝

𝑒1~𝑒2
or

𝑓1~𝑓2

𝑒 ∥ 𝑓
Assign
port

Assign
port R

yes no

yes

𝑒 ∥ 𝑞

Assign
port C

yes

yes

𝑓 ∥ 𝑝

Assign
port I

yes

yes

Assign
port TF

yes

GY

Assign
ports TF C

Assign
ports TF I

no

no

3 state
variables

Disregard
modulating

variable

yes

Assign
ports M

Start
Unable

to assign

Unable
to assign

yes

no

no

no

no

no

no

Legend

R

C

TF

I

GY

M

Resistor

Capacitor

Inertia/Inductance

Transformer

Gyrator

Modulation

Signal flow

Figure 4-5: Process for assigning abstraction ports

is possible. Parallel in this context means that effort and flow act in parallel directions, such as force and
speed, as time derivative of the displacement, in a spring. Non-parallel effort-flow relations result in the
assignment of the GY port. Non-parallel relations of either effort-displacement or flow-momentum are
combinations of two bond-graph characteristics and are considered as the second special case, cf. Sec-
tion 4.4.3. A TF port can be directly assigned in the case that an effort relates to another effort variable
or, vice-versa with two flow variables.

This assignment procedure is exemplified with the physical effect of Biot-Savart. This physical effect
is represented in the design catalog with the equation F = I · l · B. From this equation, the variables F
(mechanical translational force) and I (electrical current) are relevant for allocating the physical effect to
a bond graph element while l and B are disregarded. The state variables F and I represent a proportional
relationship between an effort and a flow from two different domains (d1 : mechanical translational and
d2 : electrical): ed1 ∼ fd2. Considering the law of Biot-Savart in greater detail, it turns out that F and
I act in directions that are not parallel (‖). The parallelism of effort and flow are a prerequisite for the
assignment of R, I, and C ports. Consequently, a GY and not an R port is assigned.

84 4 Automated allocation of physical effects to functions using abstraction ports

Some of the functional operators in Table 4-2, e. g. Increase, Decrease, require that an input signal
allows to modulate the intensity of the effect. The identification of suitable effects is considered in the
following section.

4.4.2 Special case 1: Modulated elements

According to Rosenberg & Karnopp (1983), modulated elements include a coupling for a further input
signal that varies the modulus of the TF element, the gyrator ratio of the GY element or the resistance of
an R element. In bond graph methodology, these elements are denoted as MTF, MGY and MR. Accord-
ing to the notion of abstraction ports, the additional M port is introduced. Further, these elements are
equipped with an additional signal port modeling the input signal for the modulation. To further comply
with the assignment procedure seen in Fig 4-5, a decision point is introduced where the modulated state
variable is eliminated. This is exemplified with the physical effect Coriolis force in Figure 4-6.

Figure 4-6: Schematic drawing of the Coriolis force, adapted from (Koller, 1994), and alternatives for
assignment of abstraction ports

In the case of the physical effect of Coriolis force, a GY-element in the mechanical translational domain
(Fc ∼ vr) can be identified. ω can be regarded as the input signal that varies the modulus of the ele-
ment, cf. Table 4-2. Alternatively, the Coriolis force could be interpreted as a TF-element between the
mechanical translational (vr) and the mechanical rotational (ω) domains with the force Fc considered
as being the modulating element. Lastly, the Coriolis force could be looked at as a being a GY-element
between the mechanical translational (vr) and the mechanical rotational (ω) domains with Fc as the mod-
ulating element. The physical effect Coriolis force can therefore be mapped to three specific bond graph
elements. This means that three separate physical effects could be noted for the Coriolis force, each one
with a different state variable as the modulating variable. This may result in each effect being assigned
a different abstraction port depending on the physical domain and the nature of the two state variables
that portray the constitutive law for the particular variation of the physical effect. However, noting three
separate effects may, in the case of some modulated physical effects, not always result in three techno-
logically useful effects. Nonetheless, their suggestion to the designer during the engineering process may
expand the solution space and possibly lead to an innovative solution. This also demonstrates the need
for the additional abstraction ports.

4.4.3 Special case 2: Combined elements

A further special case that needs to be taken into account is the fact that the equations of certain physical
effects are a combination of several bond graph elements. So far, only the combination of two bond
graph elements within one equation of a physical system is considered. Consequently, these effects do

4.4 Assignment of abstraction ports to physical effects 85

not correspond to any specific equation scheme. An example of such a case can be found in the formula
for the piezo effect, Figure 4-7:

x = d · U (4.1)

Equation 4.1 shows a direct relationship between a displacement x of the mechanical translational domain
and an effort U of the electrical domain through the piezoelectric coefficient d and can be considered as
ed2 ∼ qd1. A constitutive law linking displacement q and effort e describes a C element, however, only if
both e and q belong to the same domain. This relationship can therefore not be directly mapped to one
single bond graph element. Another way to describe the piezo effect in terms of bond graph elements is
needed. With the help of Hooke’s law

F = c · x (4.2)

the effort (F) can be related to the displacement (x) in the mechanical translational domain using the
spring constant c. The piezo effect can hence be described as follows:

F = c · d · U (4.3)

While Equation 4.2 describes a C element in the mechanical translational domain, Equation 4.3 describes
a TF-element that links the effort of domain 1 (F) to the effort of domain 2 (U).

The piezo effect can therefore be described by a combination of a C-element that relates the displacement
to effort within the same domain and by a TF-element that relates the effort of one domain to the effort
of another and can be thought of as a trans-domain storage element. Hence, this is an example for the
displacement in one domain being stored as energy in another domain. Consequently, two abstraction
ports can be assigned: C and TF. Analogously, there are physical effects, e. g. Coulomb’s force that
can have both I- and TF-element characteristics and are also equipped with two abstraction ports: I and
TF.

Figure 4-7: Schematic drawing of the piezo effect, adapted from (Koller, 1994), and assignment of
abstraction ports

86 4 Automated allocation of physical effects to functions using abstraction ports

4.5 Validation: Formalization of design catalogs

This approach is validated by assigning abstraction ports to the physical effects of the design catalogs
by Koller & Kastrup (1998) and Ponn & Lindemann (2011), Table 4-3. These catalogs were selected
because of their clarity, systematic structure and the availability of equation-based descriptions of phys-
ical effects. They differ in that they contain different physical effects and use a different notation for the
physical variables, which is taken into account using a conversion table as illustrated in Figure 4-4.

The results of the assignment of abstraction ports are depicted in Table 4-3. For both catalogs, all effects
representing an exchange of energy that is described by an equation (60.0% and 80.5%) are suitable
for the allocation of abstraction ports as detailed in Section 4.4.1. Hence, unsuitable effects (40.0% and
19.5%) can immediately be identified and do not have to be analyzed according to the assignment process
in Figure 4-5. However, only effects from the energy domains mechanical translational, mechanical
rotational and electrical are considered. Effects from other domains (26.2% and 29.9%), e. g. hydraulic,
thermodynamic, magnetic, can also be allocated to corresponding abstraction ports but are not explicitly
considered in this research. Although a high number of effects could be allocated immediately (18.2%
and 28.7%), the extension towards the consideration of the special cases (15.6% and 21.8%) provides a
valuable supplement.

Table 4-3: Result of assignment of abstraction ports to physical effects from design catalogs

Technische Universität MünchenProduct development

© 2010 Prof. Shea Hms / 2010 / 6

Number of physical effects

Koller 1994 Ponn & Lindemann 2011

Suitable for
allocation

Immediate allocation 50 (18.2%)

60.0%

25 (28.7%)

80.5%Special cases 43 (15.6%) 19 (21.8%)

Different physical domain
but suitable for allocation 72 (26.2%) 26 (29.9%)

Unsuitable
for allocation

No exchange of energy 57 (20.7%)
40.0%

13 (14.9%)
19.5%

No equation 53 (19.3%) 4 (4.6%)

Total: 275 Total: 87

An example allocation of physical effects to functions is shown in Table 4-5. Based on the assignment of
abstraction ports to functions, Table 4-2, and to physical effects (using the process shown in Figure 4-5),
a mapping between them is represented. Based on this, suitable physical effects for the realization of
functions can be identified. All of the three functions can be carried out with two different abstraction
ports, e. g. in the case of the function Convert mechanical translational energy to electrical energy, a
physical effect with either a GY or a TF port is required. While the first four effects (Electrostatic force
– Induction) solely contain these required ports, the last three bring in the additional characteristics of
capacitive bond graph elements (C port). Hence, this additional port gives an indication what unintended
behavior should be considered when assigning the piezo effect to this function, for example. Alterna-
tively, the additional (C) port characteristic could be used to realize a functional operator that requires a
capacitive behavior, e. g. Supply.

The process presented for assigning abstraction ports is well suited for a computational implementation.
The architecture of a software prototype that validates the automated assignment of physical effects to
functions based on abstraction ports is described below.

The program is divided into two main parts and is schematically illustrated in Figure 4-8. The first part

4.5 Validation: Formalization of design catalogs 87

handles the assignment of physical effects to the corresponding bond graph elements, i. e. abstraction
ports. The second part assists the designer during the concretization process by providing a search for
suitable physical effects to fulfill the required functions. Details of these parts are presented in the
following subsections. The source code of all program parts is written in the Python programming
language.

List of specific

state variables

Search for

physical effects

Assignment of abstraction

ports to physical effects

Python
program

List in
Python

Paper-
based data

Manual user
input

Console
output

List of state
variables

Assignment of
abstraction ports
to physical effect

Physical effect
catalog

List of physical
effects with

abstraction ports

 List of functions
with abstraction

ports

Physical effect
search

Input: Function

Output: List of
suitable

physical effects

e ∥ q

Legend

Figure 4-8: Schematic outline of the individual program parts implementing the process for assigning
abstraction ports

4.5.1 Assignment of physical effects to bond graph elements

The first part of the program handles the assignment of physical effects from different, heterogeneous
physical effect collections, e. g. (Koller & Kastrup, 1998; Roth, 2001; Ponn & Lindemann, 2011), to
corresponding bond graph elements, as previously depicted in Figure 4-4.

Four individual software components are required. First, the Assignment of abstraction ports to physical
effects that implements the core method presented in Section 4.4. To assign an abstraction port to a
physical effect, this component requires two pieces of information:

∙ The List of state variables that contains all state variables and relates them to their respective
energy domains and formula symbols, cf. Table 4-1.

∙ The Physical effect catalog is the source of physical effects. Physical effects are characterized by
means of their name and equations, whereas occurring state variables are defined according to the
formula symbols defined in the list of state variables. Ultimately, these effects are derived from
effect catalogs.

If a new physical effect is to be registered, the user has to enter each symbol in the physical effect formula
one at a time. Next, the equation symbols are compared to the domain specific state variables stored in the
List of state variables. The occurring state variables in the equation can thus be identified and isolated.
Next, the relationship – or constitutive law – between the identified state variables is determined based
on the allocation algorithm in the source code of the program part Assignment of abstraction ports to
physical effects and the domain-specific information of the identified state variables.

Following a successful assignment, the effect, including its domain specific information, is stored in the
List of physical effects with abstraction ports.

88 4 Automated allocation of physical effects to functions using abstraction ports

For example, the physical effect Biot-Savart from the design catalog by Ponn& Lindemann (2011) would
be assigned to a bond graph GY-element that acts between the mechanical translational and the electrical
energy domains. The entry for this effect in the List of physical effects with abstraction ports looks like
this:

[’63’, ’Biot-Savart’, ’GY’, ’mechanical-translational’, ’electrical’]

63 is the ID of the physical effect Biot-Savart having a GY abstraction port and the two flow ports
mechanical-translational and electrical.

4.5.2 Search for suitable physical effects for allocation to functions

The second part of the program (see Figure 4-8) uses the List of physical effects with abstraction ports
and makes them available to be assigned to functions. The component Physical effect search is the core
of this part as it allows the user to select the function for which suitable physical effects are required.
Further, the user has the ability to constrain the search through required or undesired abstraction ports
but also through required or undesired energy domains.

In order for the component Physical effect search to perform such a task, it requires the List of physical
effects with abstraction ports as well as the List of functions with abstraction ports as input. The former
list contains the assignment described in the previous section. The latter is incorporated into the source
code of the Physical effect search and contains the content presented in Table 4-2. Table 4-4 represents
the search results for given functional operators. The number of suitable effects for every operator is
indicated in the second row. This number is split up according to the distribution of abstraction ports and
further split up into the involved energy domain that are represented by the flow ports.

4.6 Discussion

A large amount of engineering design knowledge is contained in the physical effect collections of paper-
based design catalogs. This research contributes to advances in the area of computational design syn-
thesis by introducing an approach that allows this knowledge to be made available to computational
synthesis methods. The heterogeneity of the knowledge sources requires a uniform formalization layer
to enable physical effects to be formulated in a single standard manner and to be able to integrate with a
design representation, such as FBS*.

The approach presented was inspired by the bond graph theory providing a set of abstract, physical
modeling elements and led to the introduction of the notion of abstraction ports as a classification scheme
for physical effects. Hence, abstraction ports provide a stepping stone in the concretization process
between the levels of abstraction Function and Behavior. The approach concentrates on physical effects
that are based on a flow of energy. Only these can be modeled using bond graph elements. They were
analyzed according to their ability to be allocated to functional operators of the Reconciled Functional
Basis. Further, the equation schemes of the bond graph elements were defined, as they serve as a blueprint
on which abstraction ports can be assigned to the equations of physical effects. The process for assigning
ports is elaborated in an algorithmic manner and has been successfully validated using the formalization
of two design catalogs.

4.6 Discussion 89

Table 4-4: Physical effects found for given functional operators, sorted according to their abstraction port
and flow port

Functional operator Effects found
1 electrical electrical
1 electrical mechanical-rotational
2 electrical mechanical-translational
1 mechanical-translational electrical
3 mechanical-translational mechanical-rotational
4 mechanical-translational mechanical-translational
5 electrical electrical
1 electrical mechanical-translational
1 mechanical-rotational mechanical-translational
3 mechanical-translational electrical
1 mechanical-translational mechanical-rotational

15 mechanical-translational mechanical-translational
1 electrical electrical
1 electrical mechanical-rotational
2 electrical mechanical-translational
1 mechanical-translational electrical
3 mechanical-translational mechanical-rotational
4 mechanical-translational mechanical-translational
5 electrical electrical
4 mechanical-translational mechanical-translational
5 electrical electrical
1 electrical mechanical-translational
1 mechanical-rotational mechanical-translational
3 mechanical-translational electrical
1 mechanical-translational mechanical-rotational

17 mechanical-translational mechanical-translational
8 electrical electrical
1 mechanical-rotational mechanical-rotational
5 mechanical-translational mechanical-translational
5 electrical electrical
1 electrical mechanical-translational
1 mechanical-rotational mechanical-translational
3 mechanical-translational electrical
1 mechanical-translational mechanical-rotational

14 mechanical-translational mechanical-translational
1 electrical electrical
1 electrical mechanical-rotational
2 electrical mechanical-translational
1 mechanical-translational electrical
3 mechanical-translational mechanical-rotational
4 mechanical-translational mechanical-translational
3 electrical electrical
1 mechanical-rotational mechanical-rotational
3 mechanical-translational mechanical-translational
6 electrical electrical
1 mechanical-rotational mechanical-translational
3 mechanical-translational electrical
1 mechanical-translational mechanical-rotational

16 mechanical-translational mechanical-translational
5 electrical electrical
1 electrical mechanical-translational
1 mechanical-rotational mechanical-translational
3 mechanical-translational electrical
1 mechanical-translational mechanical-rotational

14 mechanical-translational mechanical-translational
8 electrical electrical
1 mechanical-rotational mechanical-rotational
5 mechanical-translational mechanical-translational
8 electrical electrical
1 mechanical-rotational mechanical-rotational
5 mechanical-translational mechanical-translational
4 electrical electrical
1 mechanical-rotational mechanical-rotational

11 mechanical-translational mechanical-translational
3 mechanical-rotational mechanical-rotational
5 mechanical-translational mechanical-translational
4 electrical electrical
1 mechanical-rotational mechanical-rotational

11 mechanical-translational mechanical-translational
2 mechanical-rotational mechanical-rotational
5 mechanical-translational mechanical-translational

Search results
Abstraction port Flow ports

49Decrease

Convert 38

Supply 23

25Increment

Increase 46

39Decrement

24Store

14Prevent

14Inhibit

TF25

14 R

7 I

16 C

R14

TF25

12

7

27 TF

R

GY

26 TF

12 GY

I8

C16

R14

TF28

9 R

12 GY

90 4 Automated allocation of physical effects to functions using abstraction ports

Table 4-5: Example mapping of functions to physical effects

The advantage of the described method lies in the fact that it is not necessary to consider the structure
of an equation. This means that simply the occurrence of state variables in the formula that describe a
physical effect is sufficient for correctly allocating abstraction ports; their position within the equation is
not important. This approach bypasses the problem arising through formulas for certain physical effects
being structured differently in different design catalogs. The problem that different design catalogs might
use different equation symbols to represent a certain variable can be overcome by using a conversion table
to translate the given equation symbols to equation symbols in a uniform set. Further, adding new effects
to the knowledge repository, which might arise due to technological advances, is not an issue as long as
the effect is based on an exchange of energy and its equation is composed of known variables. Hence,
with the achievement of the Expected Contribution 3 (formalization of design catalogs), advances in
terms of the Research Goals 1 (increase effectiveness and efficiency of knowledge formalization) and
3 (formalization of existing design knowledge resources) are delivered. Beyond that, the approach is
not bound to a physical domain as the underlying bond graph methodology is a domain-independent
approach for modeling physical systems. Hence, it is fair to assume that a successful mapping for the
three domains being considered is transferable to the remaining ones.

The approach classifies physical effects according to their ability to be allocated to functional operators
by introducing abstraction ports valuable especially for computational design synthesis approaches. The
synthesis method presented in Chapter 3 concentrated on the allocation of functions to physical effects
based on input and output flow ports. Solutions were generated as long as the set of available func-
tions and physical effects was small enough, meaningful, yet surprising. However, scalability in terms
of integrating new elements was not sufficiently supported due to the combinatorial expansion of the
solution space. The introduction of abstraction ports, in addition to flow ports, increases efficiency when
searching for suitable physical effects for the concretization of functions, cf. Table 4-5. It provides, fur-
thermore, for the identification of unintended physical effects and gives indications about how physical

4.6 Discussion 91

effects can be associated to multiple functions in the case that they have multiple abstraction ports. An
example for this is the piezo effect as depicted in Figure 4-9. Previously, the mapping to functions was
solely based on matching input and output flow ports and only captured the effect’s capability to convert
mechanical-translational energy to electrical energy. Now, the additional capacitive nature of the effect
can be represented as well and leads to assignment of a C-port. Thereby, this effect is qualified to be
allocated to the additional function Store mechanical mechanical-translational energy, although it is also
valid to map only the Convert function. Graph grammar rules, similar to those depicted in Table 3-1,
could perform this task automatically. As such rules could be based on port matching, the definition of
generic rules is feasible that does not depend on the actual elements in the metamodel but on the set of
abstraction ports. Unintended effects, such as friction being necessarily associated with wheels, were
previously hardcoded in the metamodel in the realizes-variable of components as depicted in Figure 3-6.
Using abstraction ports, those unintended aspects of a physical effect become apparent simply through
detecting unconnected abstraction ports.

Piezo
effectT

Piezo
effectT

TFC

T Convert T Store T

C

T

TF

Convert

Allocation of physical effects to
functions based on flow ports only

Allocation of physical effects to functions
based on flow ports and abstraction ports

AbstrPorts_Piezo_previous-now

Figure 4-9: Example allocation of piezo effect to functions

The algorithmic nature of the assignment process is suited for computational implementation. This is
shown with a software prototype consisting of two main components. In the first part, the automated
assignment of abstraction ports to physical effects is carried out. This builds the basis for the second
component that searches for suitable physical effects for functions. So far, this prototype proposes suit-
able physical effects for a given function to the human designer.

Integration with the object-oriented graph grammar implementation for computational design synthesis
(called booggie) will support automated search for alternatives for allocating physical effects to func-
tions.

Further, the concepts of metamodeling support the definition of abstraction and flow ports and provides
for the formalization of design rules. The identification of abstraction ports out of the equation of physical
effects should be implemented as a plugin to booggie.

5 Development of the software prototype
booggie

The computational design synthesis approach that is based on object-oriented graph grammars has been
implemented in the open-source software prototype booggie30. This chapter starts with a presentation
of the software requirements that need to be fulfilled in the implementation of object-oriented graph
grammars. In an abstract sense, booggie is a tool to define domain-specific modeling languages based
on which grammar rules automate the generation of graph-based models. For that reason, the formal
foundations for defining and using modeling languages in booggie are presented in Section 5.2. There-
after, the implementation of the requirements in a software prototype is, in the first step, portrayed from a
global perspective detailing the overall software architecture and the applied implementation paradigms.
Afterwards, the implementation of selected components is described. The usability of the implementa-
tion in an industrial context is illustrated and validated in a study that targets the automated configuration
of aircraft cabin layouts. This chapter closes with a discussion and opportunities for future work.

5.1 Software requirements

Software requirements can be differentiated between functional and non-functional requirements (Bruegge
& Dutoit, 2010, p. 159ff). While the first category describes the interactions between a piece of software
and its environment (here: the user), the latter captures aspects regardless of the required functionality
and primarily addresses issues related to the software quality in general.

In the following, a condensed overview of the most important requirements is given that have to be
fulfilled to achieve the Expected Contributions 5 and 6 and to illustrate, or validate, the achievement
of the other expected contributions. In the upcoming sections 5.3 and 5.4 reference is made to these
software requirements (abbreviated as SWReq).

5.1.1 Functional requirements

First, the software prototype has to support the entire knowledge formalization process as presented in
Section 3.2. This leads to the definition of five fundamental software components as depicted in Figure 5-
1. The nature of object-orientation requires the separation into a definition and an application part that
are respectively concluded either through grammar compilation or graph transformation, represented
as black boxes in Figure 5-1. Regarding the overall knowledge formalization process, the following
requirements are essential:

Software Requirement 1. Provide a solution-independent implementation supporting the knowledge
formalization process as depicted in Figure 3-2.

Software Requirement 2. Develop user interfaces, termed perspectives, to guide the user through the
knowledge formalization process. For these, intuitive interpreters – or at least the foundation for future
development of intuitive interpreters – have to be implemented. Emphasis is to be put on the ease of

30brings object-oriented graph grammars in to engineering

94 5 Development of the software prototype booggie

use of the Metamodel perspective and a visual rule interpreter; these are the main input channels for
formalizing model-based and rule-based engineering knowledge.

Grammar compilation and graph transformation component

Graph visualization componentRule sequences
component

Rules
component

Metamodel
component

Resulting
graph

G
ra

ph

tra
ns

fo
rm

at
io

n

Compiled
grammar

Initial
graph

Rule
sequence set

C
om

pi
la

tio
n

Meta-
model

Rule
set

Definition of
vocabulary

Definition
of rules

Definition of
rule sequences

Definition of
an initial graph

Reuse

Reuse

1 2 3 4

5

Figure 5-1: Required software components according to the knowledge formalization process, cf. Fig-
ure 3-2

The core idea of this research is the combination of model-based and rule-based knowledge formalization
in an integrated knowledge representation that is reflected by the knowledge formalization process and
the respective software components (Figure 5-1). The requirements regarding the expressiveness of the
model-based knowledge representation all refer to the definition of metamodels and can be subsumed as
follows:

Software Requirement 3. The metamodel has to support the definition of modeling elements and their
respective attributes. To support an efficient definition of the modeling domain in a hierarchical manner,
inheritance and the definition of abstract element types are required.

Software Requirement 4. Enable the representation of topological constraints between element types,
i. e. ports. Similar to the element type hierarchy, a port type hierarchy should support inheritance and
abstract port types.

Software Requirement 5. Provide for the definition of the visual appearance of element types in the
metamodel such that it can be accessed during the graph transformation, e. g. for layouting or arranging
elements.

As counterpart to the model-based knowledge representation, the implementation of the rule-based
knowledge representation has to consider these points:

Software Requirement 6. Two classes of procedural statements are required:

∙ Graph transformation rules, i. e. production rules or simply rules in short, encapsulate operations
that represent modifications of a graph-based model.

∙ In scripts, a programming language can be used to define operations in a programming-like man-
ner, e. g. for invoking the analysis of the current models with external simulation tools.

Software Requirement 7. The expressiveness for the definition of graph transformation rules should
cover rule parameters, return values and rule constraints, as detailed in Section 3.2.1.

Software Requirement 8. The definition of generic graph transformation rules requires that abstract
element and port types can be used in the rule definition.

5.2 Formal definition of the booggie modeling language (bgML) 95

Software Requirement 9. The definition of rule sequences should allow the concatenation of graph
transformation rules and scripts to complex, logical structures. While performing the transformation, the
intertwined execution of these two rule types has to be provided.

Targeted at applications in engineering design, the visual representation of generated models is crucial
for the user to get an impression of the generated solution and to gain confidence in the computational
results. Particularly, these two requirements are to be considered:

Software Requirement 10. A 3D-visualization of the graph-based models is required that enables,
for example, the representation of the preliminary geometry of products or the visual partitioning into
different levels of abstraction.

Software Requirement 11. Generated graphs should not be just static images of the model but rather
allow an interaction with the user, e. g. for intuitively adding or deleting modeling elements.

5.1.2 Non-functional requirements

The following non-functional requirements refer to the implementation at large:

Software Requirement 12. The implementation should be platform independent such that potential
applications and future research is not restricted by the selected operating system.

Software Requirement 13. A modular and expandable software architecture is required such that the
implementation can be easily extended.

Software Requirement 14. Reusing mature open-source software should allow for a high overall soft-
ware maturity.

In general, non-functional requirements address issues such as usability, reliability, performance and
supportability (Bruegge& Dutoit, 2010, p. 160). Although these aspects were taken into account for the
implementation, their scientific significance is considered low and are hence not further discussed.

5.2 Formal definition of the booggie modeling language (bgML)

To define a modeling language, another language is needed. This language, called the metamodeling lan-
guage, requires either another layer describing its elements or it is reflective, i. e. the modeling elements
of the layer are used to define the layer itself. The Object Management Group (2007) introduced a four
layered metamodel stack to define the Unified Modeling Language (UML) using the Meta-Object Facil-
ity (MOF). In this definition, M0 contains the runtime instantiations, i. e. real data, of its upper layer,
M1, which contains the type definitions of the runtime instances. M2 contains the modeling elements for
modeling M1 and so on. An illustrative example is depicted in Figure 5-2.

In this research, these four levels are required as well. Just like with UML, M0 contains real objects,
which belong here to the engineering domain. These objects are not runtime instantiations but real
existing things, e. g. constituents of the (future) product. A model of these objects is represented as a
booggie graph in M1. Its modeling elements, i. e. ports and elements, are instantiated from the definition
in M2. In Section 3, M2 is termed metamodel; one specific metamodel that defines the modeling elements
for FBS*-based product models of hybrid powertrains is depicted in Figure 3-6. Within M3, it is specified

96 5 Development of the software prototype booggie

UML Infrastructure Specification, v2.1.1 19

.

Figure 7.8 - An example of the four-layer metamodel hierarchy

Class

Attribute Class

Video

+title: String

«instanceOf»«instanceOf»

: Video

title = "2001: A Space Odyssey"

«instanceOf»«instanceOf»

M3 (MOF)

M2 (UML)

M1 (User model)

Instance

«instanceOf»

«instanceOf»

classifier

«instanceOf»

M0 (Run-time instances) aVideo

«instanceOf»

«snapshot»

Figure 5-2: Example of the four-layer modeling language stack (ObjectManagement Group, 2007)

that element types and port types are available for representing M2 models. The modeling syntax for M3
is the graph model language in GrGen.NET (Jakumeit et al., 2010) that allows specifying typed and
attributed multigraphs with multiple inheritance. In M3 the link is made between the metamodel of the
hybrid knowledge representation (represented in Section 3) and the graph-based representation that is
used for graph transformations in GrGen.NET. Hence, from a formal point of view, GrGen.NET’s graph
model language can be considered as M4. Figure 5-3 illustrates the interrelation between M0, M1, M2
and M3.

In this section, a formal definition is given of the booggie modeling language (bgML) spanning from
M1 to M3. Since bgML is a formal modeling language, all domain-specific DSLs that are developed in
booggie can be considered formal as well. The advantages of using formal modeling languages in terms
of enabling model transformation address Research Issue 4 (lack of modeling standards and tool inte-
gration) leading to the Expected Contribution 4 (foundation for model transformation). In this section, a
formal perspective is adopted to describe the language details of M1, M2 and M3 within booggie.

5.2.1 booggie graph (M1)

Any booggie graph is a specialization of a typed and attributed multigraph31 with inheritance on node
and edge types that is defined as the tuple G = (N, E, IN , IE , AN , AE). N is the set of nodes and E is
the set of edges. IN and IE are graphs describing the inheritance hierarchy of nodes and edges. They
are defined in a metamodel. AN and AE are sets of attributes of the respective nodes and edges. How a
booggie graph is derived from this definition is discussed in the following.

Ports are one of the main concepts of graphs in booggie. They enable the interconnection of elements,
rather than connecting the elements themselves with edges. This allows for having defined interfaces

31A multigraph can have multiple edges between the same nodes. These edges are also called parallel edges.

5.2 Formal definition of the booggie modeling language (bgML) 97

booggie metamodel
specification

booggie
metamodel

booggie
graph

Objects of
the reality

are modeled
with

uses modeling
elements of

uses modeling
elements of

Figure 5-3: Four-layer modeling language stack of booggie

and is helpful when rules are formulated that match for ports, regardless of the element they are assigned
to. 5-4 shows a booggie graph with two elements, connected with an edge that is attached to a port on
each of its ends. It illustrates the fact that ports are not isolated nodes of the graph, but always have to
be attached to an element. To introduce ports into the previous graph definition, the general set of nodes
N is split up into two sets NEl and NP, which contain the elements and ports. These two sets are disjoint
from each other and together provide all the nodes of the graph such that N = NEl∪NP and NEl∩NP = ∅.
Accordingly, the set of node attributes AN is split up into AEl and AP. Attributes can only be applied to
elements and ports. Every attribute belongs to exactly one item and is assigned to them by the function
attr : A→ NEl ∪ NP.

Figure 5-4: Example booggie graph: Ports are depicted by small squares attached to the two elements

An element in a booggie graph cannot be connected with any other element by an edge but provides a set
of ports for this reason. This set can also be empty, which means that the element can never be connected
with another element. It stays isolated as long as a rule adds a port to it that can be connected to another
port. Each port belongs to exactly one element, i. e. ∀x ∈ NP ∃ element(x) ∈ NEl. This is expressed
by the function element : NP → NEl, which maps a given port to the element it belongs to. One of the
following three direction values D = {in, out, undirected} is assigned to every port in NP and defined
by the following direction function: dir : NP → D. Thereby, it can be represented whether a port is
considered as input, output or as unspecified in that respect.

booggie edges in E do not have attributes and are not defined in a hierarchy of inheritance. They are
used to represent the links between ports. Through ports, the direction of the connection between two
elements, e. g. the direction of an energy flow, is defined. However, the internal representation of edges
requires the identification of their adjacent ports that are termed source and target but do not interfere

98 5 Development of the software prototype booggie

with the direction determined by the ports. Edges cannot be connected to any node but only to nodes
in NP, i. e. ports. For this reason, the functions s (returning the port at the source of an edge) and t
(returning the port at the target of an edge) only map to ports, i. e. s, t : E → NP.

To form a valid booggie graph, all edges have to satisfy the following constraints:

∙ No dangling edges are allowed, i. e. ∀e ∈ E ∃x, y ∈ NP : s(e) = x ∧ t(e) = y

∙ Any port may have at most one adjacent edge: ∀n ∈ NP : |{e ∈ E : s(e) = n ∨ t(e) = n}| ≤ 1. This
also implies that edges may not connect a flow port with itself. This way, a port can only be either
in the state of being unconnected or of being connected to another port.32

∙ Two connected ports must have matching flow directions: ports with out direction may only con-
nect to in-directed ports, whereas undirected ports may be connected to ports of any direction.
Hence, ∀e ∈ E : (dir(s(e)) = out ⇒ dir(t(e)) ∈ {in, undirected}) ∧ (dir(t(e)) = in ⇒ dir(t(e)) ∈
{out, undirected}) must hold, i. e. if one of the ports is out- or in-directed, the direction of the
edge is already determined. This constraint also implies that no two out- or two in-ports may be
connected.

∙ The types of two connected ports have to match in such a way that they are either of the same type,
or one type is the ancestor of the other one, i. e. ∀e ∈ E : type(s(e)) ∈ clan(type(t(e)))∨type(t(e)) ∈
clan(type(s(e))) (the function clan returns all ancestors of a type and is part of the metamodel
definition).

Consequently, a booggie graph is defined as the tuple

Gbg = (NEl,NP, E, IEl, IP, AEl, AP, s, t, dir, element).

For an overview of the nomenclature used in this section, refer to Appendix 9.5.

5.2.2 booggie metamodel (M2)

The booggie metamodel is used to define the vocabulary, i. e. element types and port types, together
with its logical inheritance structure that can be instantiated in a booggie graph. As every typed graph,
every booggie graph relates to a metamodel by means of its two inheritance graphs IEl and IP that are
defined as IEl = (NElT , EElT , AElT , p) and IP = (NPT , EPT , APT). The sets NElT and NPT contain the
element types and port types as nodes; the edges representing the inheritance dependency between them
are represented in the sets EElT and EPT as directed edges. The graph structure of IEl and IP becomes
apparent in the metamodel definition in Figure 3-3.

In contrast to the port type inheritance graph, IEl is extended by the function p that acts as a descriptor of
which port types are associated to which element types: p : VE → VP × D × R, where D is the set of the
three possible directions of a port (in, out, undefined), and R is a range interval from zero or a positive
integer to any greater or equal integer, i. e. R ⊆ N0. With this function p, every element type contains the
information about how many and which ports an instantiated element in the graph may have. The range
defines a lower bound of ports (of the associated port type with the specified direction) that an element

32For the sake of better readability, this constraint is violated in the depiction of the hybrid powertrain examples in Section 3.3.2.
Hence, ports can be found that have multiple edges. Within booggie, this could not occur since missing ports are added
automatically to achieve a valid graph.

5.2 Formal definition of the booggie modeling language (bgML) 99

must have and an upper bound of maximum ports of this sort that it may have. Every type, represented by
a node in either of the two inheritance graphs, is described by a globally unique type name. This means
that a bijective mapping, typename : VE ∪ VP → N, with N being a set of character strings containing
all type names, exists.

In booggie, a mechanism is implemented that validates the edge constraints from the previous section
and the multiplicity constraints in R. Elements and edges that violate against them are highlighted in
red.

5.2.3 booggie metamodel specification (M3)

Within M3, the foundation is laid for defining IEl and IP. This is accomplished by defining the two
root nodes of the element type and port type hierarchy using the syntax of GrGen.NET’s graph model
language. As depicted in Figure 5-5, these root nodes are defined as the node types33 PortType and
ElementType. All modeling elements that are defined in metamodels, e. g. in Figure 3-6, inherit from
these two types. Hence, all their descendants have the layout properties that are defined here. By default,
elements are visualized as big white squares and ports as small white squares. These properties can be
overwritten by their ancestors but can also be manipulated in rules as demanded in SWReq 5.

Layout

properties

Layout

properties

How to:

 - gm-Datei in N++ geöffnet, dargestellt im C#-Style

 - als PDF gedruckt

- maximal reingezoomt und Screenshot

- Paste hier rein

Supply RConvert

ConvertC RSupply C

DJointDJointDJoint Relation

Subtype of

ElementType

Subtype of

ElementType

Subtype of

PortType

(Output)

Subtype of

PortType

(Input)

Subtype of

PortType

(Output)

Visual representation

Internal representationequivalent

Figure 5-5: Metamodel specification (M3) using GrGen.NET’s graph model language and example of
the visual representation of a booggie graph and it’s internal representation according to M3

Besides these basic node types for elements and ports, some edge types are defined here that are not
further detailed in the preceding formal description of bgML. These have only little importance for

33Please note that GrGen.NET’s graph model language adopts the term class. However, as defined on page 31, the term type is
used here as it designates blueprints of instances in the context of modeling.

100 5 Development of the software prototype booggie

using bgML from a user perspective and are not further detailed in M2, i. e. these edge types have no
descendants. Instances of the edge type Relation are used to create connections between ports. Edges
of type UJoint link undirected ports to their elements and edges of type DJoint link directed ports, i. e.
input and output ports, to their elements. UJoint and DJoint element types are only required for booggie’s
underlying representation such that the dependency between an element and its ports can be represented
using GrGen.NET’s graph representation. In the visual representation of a booggie graph, these edges
have no significance for the user as they are not visualized.

The example in Figure 5-5 illustrates the use of these element and port types for representing a booggie
graph. The element types Supply and Convert are defined in M2 in IEl (cf. metamodel in Figure 3-6), the
two port types chemical and mechanical rotational are defined in M2 in IP; (cf. metamodel in Figure 3-
3); these are hence either subtypes of ElementType or of PortType. As all relations between elements
are characterized by ports, there is no need to further specify edge types between them and instances of
Relation are directly used in the booggie graph. DJoint-instances are used to connect directed ports to
the elements, undirected ports (represented as DJoint-instances) are not used here.

Screenshot in

subfolder

Decompositon

port

Mechanical

translational

energy port

Electrical

energy port

Chemical

energy port

Signal

port

Figure 5-6: Overall function Displace vehicle decomposed into the high-level functions Boost and Recu-
perate (energy) electrically by means of decomposition ports

Contrary to this example, the metamodel represented in Figure 3-3 contains three edge types (Flow, Con-
cretization, Decomposition) instead of the corresponding port types. The reason for this inconsistency is
that the synthesis of hybrid powertrains was developed based on a predecessor of booggie not requiring
that strict application of ports. In booggie, all relations have to be port-based. As depicted in Figure 5-6
instead of a decomposition edge, decomposition ports are used.

5.3 Software architecture

The Model-View-Controller (MVC) architectural pattern is a widespread approach in software devel-
opment that was first formulated by Reenskaug (1979). As depicted in Figure 5-7, MVC classifies an
application in three different parts:

∙ Model should be a one-to-one mapping to the user’s mental model representing a segment of the
reality in the user’s perception. booggie refers to a mental model that interprets product architec-
tures as graphs built up of elements and ports. The computerized model does not necessarily have

5.4 Implementation of selected (sub-)components 101

to be part of the software tool; it could, e. g., be implemented in an external database. However, in
booggie it is part of the implementation.

∙ View is a visual representation of the model and adjusts to the user’s input. A single model could
have multiple views for different purposes.

∙ Controller manages the presentation of views and handles user input. According to the user’s
input, the controller modifies views and updates the model.

Tool

Controller

View
ModelUser

Correspondance

Mental

model

Computer

model

Figure 5-7: Model-View-Controller schema according to Reenskaug (1979)

Subdividing an application into these three parts clearly structures the software architecture and enables
several advantages. The most significant benefit of MVC is the decoupling of components; this increases
the reusability of single program parts. Hereby, complex software structures are subdivided into smaller,
manageable components, which cannot only be reused for different purposes but also can be replaced by
components with a similar or extended functionality. Due to this separation, an application is easier to
maintain and test because each component has to be tested only once and occurred errors can be located
easily. This principle also results in a less complex program structure because the code for solving one
concern is not cluttered with the code of another one, which again results in a higher flexibility and
reusability (Hürsch & Lopes, 1995). For example, the graph visualization component of booggie is
reused several times, like visualizing graph transformation rules, initial graphs and graph transformation
results. It only takes care of presenting a graph and has no bindings to other components that may interact
with this graph. Hence, it could be reused for any visualization purpose independent from the context.

For a more detailed description of the implementation of the MVC pattern in booggie and the realization
of the Software Requirements 1, 2 and 13, refer to Appendix 9.4.

5.4 Implementation of selected (sub-)components

booggie is implemented in the programming language Python34 that is clear to read and write and easy to
learn. Python is a scripting language, hence, no compilation is required since Python is interpreted at run
time. It supports many programming paradigms, such as object-oriented programming. A Python-based
adaption (PyQt) of the powerful GUI development library Qt has been used. The combination of Python
and PyQt makes it possible to develop platform independent applications and run them unchanged on
all the supported platforms. booggie has successfully been executed on various Windows versions and
on the Linux distributions Ubuntu, Debian and Mandriva, cf. SWReq 12. A wide variety of scientific
libraries are available making Python, concerning the functionality, similar to Matlab. These advantages
and the fact that Python can be combined with compiled languages like C++ makes Python an excellent
choice for developing scientific software prototypes in the field of scientific computing (Langtangen,
2011).

34Official Python website: http://www.python.org

102 5 Development of the software prototype booggie

Over the years, booggie evolved into a large software project. It currently consists of more than 170,000
lines of code35. Hence, a description of the entire implementation would exceed the scope of this thesis.
Instead, some of the key components, or their subcomponents, are described that implement the main
requirements. The management and execution of this software development project is carried out using
the facilities offered by Sourceforge36. The source code and additional project information are accessible
on the project website at http://booggie.org.

5.4.1 Metamodel perspective

Within the metamodel perspective (Figure 5-8) the modeling domain is defined. For illustration, a simple
example is used consisting of the geometric primitives circles and square in the colors blue, green and
red. These elements are hierarchically defined in the Element Types docklet, cf. SWReq 3. The use of
inheritance is exemplified with two float number attributes that are defined for the element type Primitive
and inherited by all subtypes. The length attribute contains the default value 5 and the attribute for
representing the surface size is set to 0 and has to be calculated in a later step. A special window for
the definition of the elements visual appearance (size, position, shape, color) is available. The visual
attributes of the elements and ports can be accessed during graph transformation, cf. SWReq 5. The
compatibility, i. e. topological constraints, of the elements is defined based on port types. The port types
are defined such that only elements of same geometry or of same color can be combined. The port
types themselves are defined in the Port Types docklet, cf. SWReq 4. In the center view, the element
type RedCircle is presented in detail containing the inherited attributes and the assigned ports that are
differentiated according their direction (every element has one incoming and one outgoing port to be
connected with compatible elements).

While booggie in general is kept solution-independent (SWReq 1), the Metamodel perspective enables
booggie projects to be tailored to specific problem domains. Through the definition of element types and
port types, domain-specific languages (DSL) can be defined. These specify modeling domains and pro-
vide the foundation for formulating graph transformation rules allow automating model manipulations.
booggie itself provides in the Metamodel perspective a formal metamodeling language for the definition
of DSLs that is called booggie modeling language (bgML). A formal definition of bgML is given in
Section 5.2.

Using bgML for defining hierarchical tree structures of element types and port types is not based on
a visual, graph-based modeling environment. Instead, a folder structure is utilized that is commonly
known from Windows Explorer and allows an intuitive approach (SWReq 2) towards hierarchies.

5.4.2 Rules perspective

Graph transformation rules and scripts are defined in the Rules perspective (SWReq 6). For the definition
of graph transformation rules, a visual rule interpreter is developed, see Figure 5-9. Through drag-and-
drop, element types from the metamodel are instantiated and can be placed on the left-hand side (defining
the source graph to be sought) or on the right-hand side (defining the target graph as a result of the rule
application) of the rule. Thereby, the definition of graph transformation rules is simple (SWReq 2). The
textual rule description, i. e. the rule code, according to the GrGen.NET syntax, i. e. the rule (source)
code, is generated automatically. GrGen.NET is the library that is integrated in booggie to perform the

35see statistics at http://www.ohloh.net/p/booggie
36Website: http://sourceforge.net

5.4 Implementation of selected (sub-)components 103

Figure 5-8: Metamodel perspective

compilation of the graph grammar and the execution of the graph transformations (Jakumeit et al., 2010)
(the integration of GrGen.NET is discussed in more detail in Section 5.4.5). The formulation of rules is
exemplified here with a rule adding a red square to a red circle, see Figure 9-4. The user can directly
access the rule code entailing the visual graph widgets to disappear. Thereby, the entire GrGen.NET
syntax can be used allowing for the definition of sophisticated rules such as required for the functional
decomposition as described in Section 3.2.1.

A simple function for calculating the surface of circles and squares illustrates the definition of scripts in
Figure 5-10. The local variable primitive contains the element of which the surface is to be calculated
and adapts, according to the respective shape, the method for calculating the surface. Hence, this rule is
generally applicable to all current ElementTypes and can be extended to additional geometries. Another
particularity to be mentioned is the import of the external math module that is required to access the
value of pi. In addition to this standard module, any other self-programmed module can also be imported.
Thus, the execution of external programming code is possible and interaction with external tools and data
sources can be realized.

104 5 Development of the software prototype booggie

Visual rule definition:

Left-hand side

Right-hand side

Textual rule definition: Rule code

Figure 5-9: Rule interpreter for the visual and textual definition of graph transformation rules

5.4.3 Rule Sequences perspective

The concatenation of graph transformation rules and scripts can be done in the Rule Sequences perspec-
tive, see Figure 5-11. Rule sequences, as for example defined for the synthesis of hybrid powertrain
architectures in Figure 3-4 on p. 63, allow to formalize a synthesis strategy. The powertrain example fo-
cused on the graph transformation aspects of this synthesis approach – essentially adding, modifying and
deleting nodes and edges of a graph. However, in many applications it is required to perform actions dur-
ing the synthesis procedure that can better be described in a programming language or require the richer
functionality of external programming libraries or software tools. Such use cases can range from the
simple calculation of a random number to the import of data from external data sources or the execution
of an external tool, e. g. a simulation software. Within this software prototype, a mechanism is realized
that can handle rules and scripts in a uniform way. It is illustrated with the example in Figure 5-11 that
shows a rule sequence composed of rules and scripts and consists of four steps:

5.4 Implementation of selected (sub-)components 105

Figure 5-10: Text editor for the definition of scripts in the Rules perspective

1. Ten elements are randomly created in ten iterations as defined with [10]. The decision about
which element type to add is randomly made with the generation of a random integer number in
the script getRandomInt. This random value is stored in the variable randInt and further used as
rule parameter for the graph transformation rules.

2. Two random blue elements are connected using the rule connectTwoBluePrimitives.

3. The rule add_RedSquareToCircle adds a red square to a red circle. The embracement with square
brackets defines that this rule applies to every occurrence of a red circle.

4. The rule getNoSurfaceElement detects an element in its left-hand side having no surface value and
returns it to the variable element. The script calculateSurface receives this element as a parameter
and calculates the value of the element’s surface. The asterisk operator * defines that this operation
is repeated until no element without surface value can be found.

The example illustrates the information flow from rules to scripts and vice versa. This possibility to
concatenate rules and scripts in one control structure is a distinguishing feature to existing graph grammar
implementation. Further, this feature is the underlying basic principle for enabling interfaces between
booggie and external tools and to make these interfaces available in the synthesis procedure. Thereby,
the computational implementation of Expected Ccntribution 4 becomes possible.

The realization of this uniform sequence handling, and hence the realization of SWReq 9, is based
on a wrapper of GrGen.NET that controls the information flow between rules and scripts; it is further
described in Section 5.4.5

106 5 Development of the software prototype booggie

drag-and-drop

Script Script

Figure 5-11: Concatenation of rules and scripts in the Rule Sequences perspective

5.4.4 Graph visualization

The graph widget37 is a central part of the booggie application. It encapsulates the functionality for dis-
playing and manipulating graphs and is reused in several other components such as the Rules perspective.
This widget can be imagined as a black box that accepts a booggie graph instance and renders a graph
as OpenGL scene graph. The user can then manipulate the graph and the changes affect the underlying
booggie graph object.

Tulip38 is a 3D information visualization framework that is used to implement the graph visualization,
cf. SWReq 10. One of Tulip’s key benefits is the use of OpenGL for graph rendering. OpenGL al-
lows performing the graph drawing directly from the graphical processor unit (GPU). This increases
the rendering speed compared with implementations that use the central processing unit (CPU) exclu-
sively for drawing. Tulip’s data structures are optimized for handling large graphs and the framework is
largely plugin-based. Common functionality such as interacting with the graph or layouting the graph is
achieved by using runtime replaceable components rather than static hard coded parts, cf. SWReq 11.
This means that those components can be dynamically loaded during runtime, enabling the development
of custom solutions that can be easily added to the existing application without any further work. Based
on this principle, booggie reuses various graph layouting algorithms of Tulip.

Tulip is written in the programming language C++ meaning that the integration with Python had to
be achieved manually. For this task, the SIP bindings framework39 is used to wrap the Tulip classes as
Python objects. Wrapping allows the access of the class instances from within Python while transparently
performing type conversions between the Python and C++ domain.

37The term widget is used within Qt and PyQt for the graphical elements that make up a user interface.
38Project website: http://tulip.labri.fr
39Project website: http://www.riverbankcomputing.co.uk/software/sip

5.4 Implementation of selected (sub-)components 107

The original Tulip view component is reused in a widget coupling a booggie graph with Tulip’s inter-
nal graph presentation. Both graph data structures are kept consistent between the two domains. Both
components provide their own means of representing a graph. This decision is made to stay independent
of the actual Tulip library used to allow for later integration of alternative graph visualization compo-
nents.

5.4.5 Graph Transformation perspective

GrGen.NET is a graph rewrite generator that offers a domain neutral language for graph modeling
(Jakumeit et al., 2010). To achieve domain neutrality, GrGen.NET provides the possibility to create
a metamodel for defining the modeling domain. The metamodel definition supports type inheritance
allowing easy integration with the object oriented approach of booggie. GrGen.NET offers exceptional
graph transformation speed, even for large graphs, by applying various performance optimization tech-
niques to its search process and has proven to be significantly faster than its competitors. For example,
when searching a matching subgraph in a host graph while checking the applicability of a rule’s left-hand
side, GrGen.NET considers the best starting point using heuristics and taking the knowledge about the
last successful match into consideration. This is done in a conservative way such that there is no risk that
matches are not found (Geiss & Kroll, 2007).

Further, GrGen.NET covers the required expressiveness and can conveniently be integrated in booggie
using its application programming interface. Moreover, a shell application is available, GrShell, that
includes a debugging interface that is useful for the development of rules and rule sequences.

Within GrGen.NET, three formal languages are defined (Jakumeit et al., 2010) based on the language
specification language ANTLR40 (Parr, 2007):

∙ The graph model language allows the specification of the metamodel through typed and attributed
multigraphs with multiple inheritance on node and edge types and, further, the consideration of
abstract types. Within booggie, this language plays a minor role because the developed approach
is not based on typed and attributed graphs but on elements and ports. These are required for
the definition of object-oriented graph grammars such as described in Chapter 3 and are explicitly
defined in bgML as presented in Section 5.2. Hence, bgML is an intermediate language layer
that builds on the graph model language and provides the foundation for defining element- and
port-based metamodels within booggie. This stack of modeling languages is further detailed in
Section 5.2.

∙ The rule set language can be used to define rewrite rules. It covers the pattern specification (left-
hand side graph) and the rewrite specification (right-hand side) and allows recalculating attributes
of graph elements during rule application. Further, rule parameters, return values and rule con-
straints can be defined, cf. SWReq 7. Rules can be applied on any level of abstraction of the node
and edge types of the metamodel, cf. SWReq 8

∙ The rule application control language is a means of composing complex graph transformations
using single graph transformation rules. Graph transformation sequences – and all of their subse-
quences and down to individual rules – have a boolean return value. For a single rule, true means
the rule was successfully applied to the host graph, false means the left-hand side could not be
matched to the host graph.

40ANother Tool for Language Recognition

108 5 Development of the software prototype booggie

For a comprehensive introduction to GrGen.NET, refer to the official manual41.

GrGen.NET is written in C# and generates .NET assemblies containing the compiled graph transforma-
tion engine. To interface with these generated assemblies, language bindings between Python and .NET
are needed. This functionality is provided by the Python-for-.NET42 package that integrates .NET’s
Common Language Infrastructure (CLI) into the Python interpreter. Python for .NET supports the Mi-
crosoft CLI as well as Mono 43, which is an alternative implementation of the CLI supporting multiple
platforms such as Linux or Mac OS. Thereby, GrGen.NET is platform independent.

Visual rule definition:

Left-hand side

Right-hand side

Textual rule definition: Rule code

Left-hand

side

Right-hand

side

Figure 5-12: Graph transformation perspective

The interface to GrGen is implemented using an additional C# wrapper that is accessible from the Python
domain. This wrapper is needed to work around some shortcomings of the Python for .NET component

41Available on the project website: http://www.grgen.net
42Project website: http://pythonnet.sourceforge.net
43Project website: http://www.mono-project.com

5.4 Implementation of selected (sub-)components 109

and to move the transformation engine into its own thread to avoid an unresponsive user interface during
graph transformation. This wrapper also handles the execution of scripts. Both, graph transformation
rules and scripts are uniformly treated and can be concatenated to rule sequences. Rules and scripts
can exchange information based on rule parameters and return values. While graph transformation rules
use GrGen.NET’s rule language, scripts can be programmed in Python. If the wrapper, during graph
transformation, detects a programming rule, the further execution of the graph transformation is paused
and the script is fed to the Python interpreter together with the rule parameter as defined in the rule
sequence. When the programming code is executed, the wrapper receives the return value and injects it
in the rule sequence where it can be further used. With this mechanism, SWReq 9 is met.

The Graph Transformation perspective allows the user to control the graph transformation and to inspect
the generated graphs. Figure 5-12 shows a screenshot of this perspective. A graph transformation is
always executed on a host graph that might be an empty graph as well. Hence, the first step is to open a
graph from the Graphs docklet. In the top left docklet, rule sequences are available that can be applied on
the graph in the center view. To select a rule sequence for transformation, it has to be drag-and-dropped
into the text field under the graph widget. When clicking on Rewrite, the grammar is compiled and the
graph transformation is performed. Every time the metamodel or the rule set is modified, the grammar
is automatically recompiled. The graph resulting from the transformation is subsequently represented in
the center view.

In the application example, the rule sequence depicted in Figure 5-11 is applied on an empty graph and
the generated solution is saved as Solution_1. In the Selection Info docklet, the attributes of the selected
element are listed including attributes regarding the visual appearance but also attributes specifically
defined in the metamodel, such as the surface that is now 19.63. The Transformation Logs docklet is a
console that indicates by default information about the executed transformation but can also be used to
print additional information or data, e. g. for debugging, during the graph transformation.

The components for graph visualization and graph transformation, but also the GUI library Qt, are based
on external libraries that are implemented in other programming languages than Python. Hence, wrap-
pers are implemented or reused to integrate them into booggie. This allows for a smooth flow of objects
between these libraries and the core application. The possibility to wrap external, precompiled libraries
using wrappers, such as SIP or Python for .NET, is one of the big advantages of Python. Figure 5-13
illustrates the dependencies between booggie, external libraries and wrappers. The implementation of
wrappers represents a considerable effort. However, the advantage of reusing mature software compo-
nents (cf. SWReq 14) with a rich functionality outweighs this effort by far.

booggie

SIP Python for .NET

Tulip

(C++)

(Python)

PyQt

Qt

(C++)

Booggie-GrGen

wrapper

GrGen.NET

(C#)

Figure 5-13: Integration of external libraries using wrappers

The high graph transformation performance of GrGen.NET has been mentioned earlier and booggie
profits from that. To give an impression how fast the generation process in booggie is, the synthesis pro-

110 5 Development of the software prototype booggie

cess for automotive hybrid powertrains, as presented in the validation study in Section 3.3, was executed
several times on two different computers, a laptop (Lenovo X121e) and a desktop pc (DELL Precision
T5400). The results are depicted in Figure 5-14.

Operating system Windows 7 Professional 64 Bit Processor AMD E-459, Dual-Core, 1.65 GHz
Working memory 8 GB

Run
Compilation time (in s)
Solution 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 - 5
Rule applications 157 261 228 156 216 218 176 289 309 296 278 214 170 335 256
Generation time (in ms) 1279 733 858 343 608 1450 515 858 874 811 1747 577 390 873 577 1492 668
Time per rule application (in ms) 8.15 2.81 3.76 2.20 2.81 6.65 2.93 2.97 2.83 2.74 6.28 2.70 2.29 2.61 2.25 7.03 2.74
Average time per rule application (in ms) 2.74
Average reduction of time per rule application 61%

Operating system Windows 7 Professional 64 Bit Processor Intel XEON, Quad-Core, 2.83 GHz
Working memory 4 GB

Run
Compilation time (in s)
Solution 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 - 5
Rule applications 239 299 190 215 264 210 184 195 190 215 218 220 220 262 246
Generation time (in ms) 609 156 140 156 219 406 156 140 140 172 452 202 156 203 203 489 170
Time per rule application (in ms) 2.55 0.52 0.74 0.73 0.83 1.93 0.85 0.72 0.74 0.80 2.07 0.92 0.71 0.77 0.83 2.18 0.76
Average time per rule application (in ms) 0.76
Average reduction of time per rule application 64%

Average values

Desktop PC: DELL Precision T5400

11.33

237

224

4.10
Average values

0.70 0.78 0.81
72% 60% 61%

1 2 3
4.0 4.2 4.1

Notebook: Lenovo X121e

2
10.211.2

1 3
12.6

2.90 2.462.87
64% 61%57%

Figure 5-14: Analysis of the computing time for the generation of FBS* product architectures

On every computer, three runs were executed, each consisting of the grammar compilation and the gen-
eration of five solutions while the first solution is always the one that was generated directly after the
grammar compilation. The generation of one FBS* product architecture requires an average of approx-
imately 230 rule applications. As the synthesis process uses constrained random walk, a fixed number
of rule applications can not be given. In order to make the computing time comparable, the generation
time is divided by the number of rule application. It becomes apparent that one rule application takes
significantly longer for the first solution whereas the generation time for the following four solutions
are all in the same order of magnitude. The time required for one rule application is for the solutions 2
–4 between 57% to 72% lower than for solution 1. The reason for this reduction in computing time is
GrGen.NET’s internal optimization of the search process.

The generation of five solutions does not require a lot of working memory. Hence, the difference of 4
GB between the two configurations is not relevant. However, the processor performance has an essential
impact on the computing time. On the desktop pc, the generation time is lower by a factor of 3 to 4.
The fact that the desktop has a quad core processor has no influence on the computing time as booggie is
not using any parallelization. The reason for the lower computing time is the higher clock signal of the
processor. Despite that significant difference, the generation of one solution in lower than three seconds
on the slower computer is still fast enough to generate a high number of solutions in reasonable time.

5.5 Validation: Synthesis of aircraft cabin layouts

This section summarizes the approach and results of a case study conducted together with European
Aeronautic Defense and Space Company (EADS) targeted at the synthesis of aircraft cabin layouts.
After a short introduction to the motivation and goals of the project, the CDS approach is presented
followed by the synthesis results and observations on the software use and method application.

The configuration of aircraft cabin layouts is a knowledge-intensive task that is manually carried out by
experts. The goal of this task is to define the composition of the cabin consisting of cabin items, i. e.

5.5 Validation: Synthesis of aircraft cabin layouts 111

components. The problem description is composed of the customer requirements typically stemming
from the airline, such as the number of seats per class for given service ratios. Service ratios relate
service characteristics to the number of seats, e. g. number of seats per cabin attendant. Constraints from
the aviation authorities and internal requirements, e. g. from the production, have to be considered as
well.

In reference to the FBS* product model presented in Section 3.1, the Structure level is of primary im-
portance here. The Behavior level is omitted as the cabin items are predefined and do not have to be
developed based on physical effects. The analysis of the Function layer could provide added value in
terms of generating functionally innovative cabin layout designs and exploring the interplay of functions
and their embodiment as components. However, to frame the scope of this study, the Function layer is
disregarded as the functionality of the aircrafts of the Airbus A320 aircraft family44 is not considered in
this design task.

Sabin & Weigel (1998) define configuration as a special case of design having two key features: the
assembly of an artifact from " a fixed set of well-defined component types" and "components interact
with each other in predefined ways". In (Felfernig et al., 2011) this definition still reflects the common
understanding of configuration research. Felfernig & Schubert (2011) add to this the aspect of "con-
figuration knowledge" that is utilized by configuration systems. It is composed of a "product structure"
and constraints regarding the compatibility of components, requirements and resources. Hence, config-
uration is characterized by the predefinition of the building blocks of a solution and a constraint-based
definition of the configuration template. In contrast, engineering design is characterized by a high de-
gree of uncertainty and lack of knowledge about future solutions as discussed in Chapter 1. From this
perspective, this case study can be seen as a configuration problem as building blocks and configuration
knowledge are predefined by EADS and issues related to the fuzzy front end are disregarded.

Despite considering this case study as a configuration study, the task of configuring aircraft cabins in
general is faced with challenges that are special cases of those generally described for the conceptual
design phase in Section 1.1. The designers do not consider and investigate a wide range of solutions as
the configuration space is too vast and characterized by numerous constraints. A manual exploration of a
high number of solutions is not feasible, hence, configurations are generated that are, with respect to the
customer requirements, good enough although there could be better solutions. This procedure is prone to
errors and often results in extensive rework leading to delay and increasing development costs. Further, a
quick reaction to changing customer requirements is only possible with massive manual rework. Hence,
with a quick generation and analysis of a high number of different layouts and the identification of the
best solution these problems are addressed. This can be seen as a considerable step towards the goal of
generating optimal aircraft cabin layouts.

The aim of this case study is to show that the approach of object-oriented graph grammars, as imple-
mented in booggie, can deliver a contribution to tackle these challenges in an industrial context and
provides a solid foundation for future work. Thus, the Expected Contributions 5 (human-competitive
solutions) and 6 (mature software prototype) are validated. The achievement of Expected Contribution 6
builds on the fulfillment of the software requirements and is discussed in Section 5.6.

44This aircraft family includes the A318, A319, A320 and A321. It can carry between 132 (A318) and 220 (A321) passengers
and has a range of 3100 to 12000 km.

112 5 Development of the software prototype booggie

5.5.1 Structure of aircraft cabins and definition of the metamodel

In the following, a brief introduction into the overall structure and nomenclature of aircraft cabins of
the Airbus A320 aircraft family is given. First, logical items are introduced that are not physically
embodied but allow subdividing the entire cabin system into modules, as illustrated in Figure 5-15.
Typically, the cabin is divided into three zones: the door compartment zones A and C and the passenger
compartment zone B. Zones are further partitioned into subzones for the left-hand side (LH) and right-
hand side (RH). Additionally, the door compartment zones are subdivided according to the exit doors’
center line (resulting in four subzones for A and C) and the passenger compartment zone is subdivided
into the travel classes. As this case study only considers layouts with one travel class, i. e. economy
class, zone B is only subdivided into B1_LH and B1_RH. Subzones in zone B are filled with rows that
are primarily characterized by their depth, termed pitch.

Item

C1_RH

C2_RH

C1_LH
 C2_LH Subzone B1_LH

Subzone B1_RH

Zone C Zone A Zone B

RH

LH

A1_RH
A2_RH

A1_LH
A2_LH

Rows

x

y

x,y

length/

depth/

pitch

width

x

y

Figure 5-15: Logical items composing an aircraft cabin and spatial definition of items

Physical items, in turn, are reflected in real existing components of the aircraft cabin, i e. cabin items.
Both, logical items and physical items are located in the coordinate system, as depicted in Figure 5-15,
at the x, y-position in the center point and are spatially defined by their length, depth or pitch and width.
The following types of physical items are taken into consideration:

∙ Seats can be differentiated into passenger seats (abbreviated as PAX seat45) and cabin attendant
seats (CAS). PAX seats for the economy class are installed in groups of three, termed triple seat
block (TSB). CAS are mainly located in the door compartment zones and are mostly wall-mounted,
folding seats. Strictly speaking and as an aside, seats should be considered as logical items as they
are physically embodied in the TSB. However, for simplification reasons, the partners at EADS
chose to consider them as physical items.

∙ In the galley food is cooked and prepared. Wet galleys (WG) have, in contrast to dry galleys (DG),
access to the aircraft’s water system and are only located in the door compartment zones. Galleys
provide space for trolleys being mobile containers for the catering goods. Usually, a galley contains
three or four trolleys (WG3, WG4, DG3, DG4) .

∙ Lavatories (LAV) are only located in the door compartment zones.

45PAX is the aviation-specific nomination for "persons approximately".

5.5 Validation: Synthesis of aircraft cabin layouts 113

∙ There are various free areas that are explicitly modeled: Unused space is left over space that stems
from the procedure of adding rows and is not sufficiently large to add an additional row. In front
of the first row, additional legroom has to be considered and, behind the last row, space for the seat
inclination, termed recline, has to be added. The space for the passengers to reach the emergency
exits is relevant to security and must not be obstructed with cabin items. This space is partially
distributed over the four door compartment subzones and termed partial passageway (PPW). In
the case of an emergency, the cabin attendants have to assist the passengers in leaving the aircraft
through the emergency exits. Dedicated areas are defined for that purpose and are termed assist
space (ASP).

∙ Partitions and curtains are used as blinds, e. g. between door compartment zone and passenger
compartment zone, or to separate travel classes.

According to the object-oriented graph grammar approach, these elements are defined in the metamodel,
Figure 5-16. Again, it becomes apparent how using a hierarchy of inheritance eases the definition of the
modeling elements. Attributes that apply to all elements only have to be defined once in the topmost
element type, e. g. the x-/y-/z-coordinates. Ports contain the information about the logical composition
of the cabin layout, e. g. a Row contains a SeatBlock.

Input port:
Subzone contains row

Output port:
Row contains

seat block

Inherited attributes

Figure 5-16: Metamodel for aircraft cabin layouts: Element type hierarchy, port type hierarchy and defi-
nition of the element type Row

The entire aircraft cabin can be characterized by certain parameters that can be either evaluation criteria
of generated layouts or requirements provided by the customer. The following layout parameters are
crucial for an early cabin layout and are considered in this case study:

∙ A high number of seats is primarily in the airline’s interest as it stands for the achievable turnover.

∙ The pitch value defines the distance between rows and is the key indicator for seating comfort.

∙ Service ratios indicate the quality of service on board. The key service ratios are the lavatory ratio
(PAX/lavatories), the trolley ratio (PAX/trolley) and the cabin attendant ratio (PAX/attendant).

114 5 Development of the software prototype booggie

As the number of passengers is in the numerator, a lower service ratio stands for higher service
quality.

∙ Unused space is not profitable and should be as low as possible. If unavoidable, this space is used
as stowage.

Typical values for these parameters are depicted in Table 5-1. These statistical values were raised by
EADS in an analysis of 54 aircraft cabin layouts of the type A320. All layout parameters, except the
cabin attendant ratio, are divided into high density and high comfort ranges.

Table 5-1: Typical layout parameters divided into high comfort and high density layouts

avg min max avg min max
Number of PAX seats 172.3 165.0 180.0 152.6 136.0 159.0
Pitch (in inch) 29.5 28.0 31.0 33.5 32.0 36.0
PAX per lavatory 57.4 55.0 60.0 50.9 45.3 53.0
PAX per trolley 16.4 13.2 20.8 11.6 10.4 14.2
PAX per cabin attendant 32.0 30.0 33.6 32.0 30.0 33.6

High density High comfort

5.5.2 Definition of rules, scipts and the rule sequence

The overall CDS approach taken in this case study has some similarity with the procedure implemented
in the synthesis of hybrid powertrains. First, modules are generated in isolation and are then considered
in the context of the entire architecture. The synthesis approach that is implemented in a rule sequence
is depicted in Figure 5-17.

Zones A, C

Generate base
layout

Check:
Zones filled ?

Load CICs
from XML

Check:
Zone valid ?

Delete CICs
from zone

Check: Zones
A, C valid ?

Delete CICs from
zones A, C

Fill up zone B
with rows

Check: Zones
A, B, C valid ? Delete layout

Calculate
ratios

Save to
file

yes no

yes

no

no

yes

Figure 5-17: Rule sequence for the synthesis of aircraft cabin layouts

None of the rules are defined using solely the visual rule editor. This is due to the fact that the supported
expressiveness in the visual editor is too low for the definition of the rules for this application. Starting
with the visual rule editor to define the basics of a rule (e. g. identification, addition, deletion of elements
and ports) and extending afterwards the rule definition using the textual editor turned out as a good
practice. Rules and scripts are structured in a hierarchical folder structure that helps to keep the overview
also when the rule set is extended later on. In the following, every rule of the sequence in Figure 5-17
is briefly described and the result of its application in booggie is presented. These rules are considered
as high-level rules that are composed of the rules and scripts defined in the rule set. Using GrGen.NET’s

5.5 Validation: Synthesis of aircraft cabin layouts 115

command exec, rules can execute other rules and scripts and support a hierarchical rule application. For
example, the high-level rule Generate base layout is composed of the three rules init, initializeParameters
and createCabinItem of the rule set as shown in Figure 5-18.

Legend

Rule

Script

Folder

Legend

Rule

Script

Folder

Figure 5-18: Hierarchically structured rule set

Generate base layout sets the overall dimensions of the cabin layout by creating three zone elements:

116 5 Development of the software prototype booggie

door compartment zones A and C and the passenger compartment zone B as depicted in Figure 5-19. The
dimensions are set according to one specific aircraft type of the A320 aircraft family. In the following,
an aircraft of the type A320 is considered.

Door compartment
zone A

Passenger compartment
zone B

Door compartment
zone C

Figure 5-19: Base layout of an aircraft cabin defined through the zones A, B, C

The operations for the synthesis of door compartment zone are identical for zone A and for zone C.
Hence, they are defined only once and are applied twice. To ensure, that a door compartment still has to
be filled with cabin items, the rule Check: Zone filled ? is applied.

If a door compartment zone is not yet filled, the rule Load CICs from XML accesses an XML file con-
taining cabin item combinations (CIC). The CICs are predefined and validated by Airbus engineers and
reflect best practices for laying out door compartment subzones. A CIC contains, for example, a lavatory
and two cabin attendant seats mounted on the lavatory’s wall. Further, a partial passageway and assist
space is usually included, cf. Figure 5-20. A script is defined for acquiring CICs; for each of the four
subzones it queries an XML file for available CICs and randomly picks one of them. A subordinate
graph transformation rule instantiates the cabin items according to the CIC-information from the meta-
model and places them on the graph. Hence, after this operation the door compartment zone is entirely
equipped with components, which is illustrated in Figure 5-21. This operation is repeated for every door
compartment zone and results in the placement of cabin items in the front and the back part of the aircraft
cabin as shown in Figure 5-22.

While the individual CICs are verified by engineers, the combination of the four CICs of a door com-
partment zone can still exhibit invalid combinations of components. Most of these constraints state that
a number of cabin items has to be within a certain range. These values are not statically defined in rules,
but have to be defined in the first step when generating the base layout. Hence, the rule set for checking
these requirements is generic as these checking rules can adapt to every layout. Alternatively, these val-
ues could be defined in the metamodel. However, this leads to minor disadvantage that value changes,
e. g. when generating layouts for different airlines, require that the grammars have to be recompiled, as
detailed in Section 5.4.5. The rule Check: Zone valid ? checks the following constraints that a valid
door compartment zone has to fulfill. These constraints are either customer requirements (C), technical
requirements derived from the aircraft engineering (T) or requirements defined by the aviation authorities
(A). The customer requirements are typical requirements that are demanded by most airlines.

∙ Lavatory doors must not open towards passenger seats (C).

∙ A galley must not be opposite to a seat row (C).

∙ The maximum number of lavatories per door area is limited (zone A: 2, zone C: 4)(T).

5.5 Validation: Synthesis of aircraft cabin layouts 117

Subzone C1_LH Subzone C2_LH

Subzone C2_RH

Subzone
C1_RH

Lavatory

CAS
CAS

Partial
passageway

Assist
space

Figure 5-20: CIC for subzone C1_RH

Subzone
C1_RH

Subzone
C1_LH

Passenger compartment
zone B

Door compartment
zone C

Subzone
C2_RH

Subzone
C2_LH

Galleys

Partial
passageways

Lavatories

Assist
spaces

CAS

Figure 5-21: Door compartment zone C equipped with the components of four imported CICs

∙ A cabin attendant seat must be located near each regular exit that also serves emergency exit. Other
flight attendant seats must be evenly distributed among the required emergency exits (A).

If one of these requirements is violated, the zone is invalid and the rule Clear zone is fired and the
procedure for adding CICs is repeated. After both door compartment zones are filled, there are constraints
that both zones jointly have to fulfill:

∙ A minimum of one galley per class is required that has to be located in the class itself to avoid
crossing of other classes and to prevent from disturbing catering (C).

118 5 Development of the software prototype booggie

Figure 5-22: Preliminary cabin layout with equipped door compartment zones A and C

∙ A minimum of one lavatory per class is required that has to be located in the class itself to avoid
crossing of other classes and to prevent from disturbing catering (C).

∙ The maximum number of wet galleys per aircraft is limited to four due to the available systems
capacities and load limits for the different galley locations (T).

∙ The maximum number of lavatories per aircraft is limited to four due to the available vacuum
system controller capacity (T).

If one of these requirements is violated, the zones A and C are cleared applying rule Clear zones A,
C and the synthesis process starts all over again with adding CICs to the zones A and C. If the test is
successfully passed, zone B is filled with rows, triple seat blocks and seats using rule Fill up zone with
rows based on the pitch value. Usually, this value is defined by the airline. A typical pitch value for an
economy class seat row is 32". Based on the pitch value, zone B is filled up with rows until there is no
space left. In this study, no fixed pitch value is used. Instead, the pitch range between 28" and 36" is
explored. Standard values are assigned to legroom (12") and recline (5").

The entire layout composed of the zones A, B and C, as depicted in Figure 5-23, with their respective
cabin items has to fulfill these constraints that are checked by the rule Check: Layout valid ?:

∙ The total number of seats is limited to the total egress rate46 of all exits on one fuselage side. On-
wing exits have an egress rate of 35, regular exits have an egress rate of 55. As an A320 airplane
has two regular exits and two on-wing exits on every fuselage side, the maximum number of seats
is limited to 180 (A).

∙ The minimum number of cabin attendant seats is limited to one CAS per 50 PAX. Hence, four
cabin attendant seats are required (A).

Again, if one of these requirements is violated, all zones are cleared with the rule Clear zones A, B,
C and the synthesis process starts all over again with adding CICs to the zones A and C. If the check
returns a valid layout, the rule Calculate layout parameters determines the parameters that are required
to assess a layout’s quality and to compare different layouts. Finally, the layout is stored in a file using
the rule Save to file from where it can be accessed for subsequent analysis. Finally, all zones are cleared
(rule: Clear zones A, B, C) and another layout is generated. After every pass, the pitch value that is
used to dimension the rows is increased by 1". This rule sequence represents an infinite loop having

46The egress rate defines the number of persons that can leave the airplane in an emergency case through one door per minute.

5.5 Validation: Synthesis of aircraft cabin layouts 119

no termination criterion. Nevertheless, a maximum number of iterations can be defined, or the process
stops automatically when the working memory exceeds, which is the case after approximately 70 - 90
layouts.

Seats

Triple seat
blocks Rows

Unused
space

Subzone
B1_LH

Figure 5-23: Synthesized layout of an aircraft cabin

5.5.3 Grammar application and discussion of the synthesis results

In contrast to the synthesis of hybrid powertrains, the application of an aircraft cabin configurator is not
aimed at sparking innovation by generating potentially creative solutions. Rather, the cabin designer
is supported in considering a wide range of solutions and gathers an understanding about the solution
space. Therefore, alternative solutions can quickly be found and the range of possible solutions can be
negotiated with the customer.

For the specification of an A320, 81 valid, distinct layouts are generated covering a pitch range from 28"
to 36". This relatively low number is due to the fact that only three different valid CIC-combinations
for each of the door compartment zones could be generated based on the available data in the given
XML file. However, an increase of the number of solutions is simply possible by adding more CICs to
the XML-file. For the identification of distinct solutions a MySQL database is used that can cope with
much larger number of solutions. To illustrate this, 2109 cabin layouts are generated containing multiple
occurrences of identical layouts. The solution post-processing approach is depicted in Figure 5-24.

Save
synthesis

results to files

Import
into

database
MySQL

Query for
distinct

solutions
MySQL

Save distinct
solutions to

file

2109 solutions
30 files

136355 lines
11.5 MB

81 solutions
1 file

5215 lines
0.45 MB

Figure 5-24: Solution post-processing approach using a MySQL database

Applying the synthesis procedure described in the rule sequence in Figure 5-17 results in the automated
generation of result files. Memory overflows require executing the synthesis procedure for 2109 cabin
layouts in 30 runs resulting in 30 separate result files each containing 70 – 90 layouts. For every individ-
ual layout, the result files contain all cabin items of the door compartment zones and all seat blocks of
the passenger compartment zone. Each element is described with its x-/y-/z-coordinates, width, length,

120 5 Development of the software prototype booggie

type name and an Airbus-specific object ID. Thereby, the description of one layout spans on average
65 lines in a text file. The 2109 solutions generated, split up into 30 files, require 136355 lines and
11.5 MB. Analyzing such an amount of data, e. g. to detect distinct and/or identical solutions, requires a
more advanced approach than using a simple spreadsheet software that is not designed for handling that
amount of data and performing complex analyses. Handling big amounts of data is exactly the scope of
application of databases.

The open-source, relational database system MySQL is used for this purpose. The database management
and query tool MySQL Workbench47 is freely available and allows to generate database tables from
text file input. Once the data is in the database, SQL queries can be formulated to analyze the set of
solutions. The query depicted in Figure 5-25 identifies distinct solutions through comparison of the
cabin layout parameters of all solutions and generates an aggregated output stating the layout parameters
for all distinct 81 solutions. To allow for further use of the layout data, one solution file is generated
containing the 81 solutions with their individual cabin items. This file comprises essentially the same
information as the initial 30 files but without redundant layouts. As it has only a size of 0.45 MB and
contains 5216 lines, it can be analyzed in spreadsheet software without any problems.

Figure 5-25: MySQL query generating an aggregated output of all distinct cabin layouts

The identification of identical solutions is based on the comparison of the cabin layout parameters. Fig-
ure 5-26 shows how often identical layouts occurred in the generated set of 2109 solutions. The first bar
means that four different layouts occurred only once; the highest bar means that 15 layouts occurred that
have 30 repetitions each. Although such a high number of layouts have been synthesized, it is noticeable
that still four solutions occur only once and eight solutions occur twice. Hence, it is fair to conclude that

47Freely available at: www.mysql.de/products/workbench/

5.5 Validation: Synthesis of aircraft cabin layouts 121

there may be more solutions that are not yet generated. Most layouts appear between 21 and 30 times and
the average number of occurrence of identical layouts is 26. This outcome clearly shows the shortcoming
of random walk search for design generation. To potentially find one more solution, a high number of
redundant solutions has to be generated and one can never be sure that all solutions in the solution space
are found. The question as to why the number of repetitive solutions is not equally distributed cannot
be conclusively clarified. One explanation is that the 30 repetitions are related to the 30 synthesis runs
that result in the generation of 30 files. The rules for checking the constraints may induce patterns in the
generation that persist despite the randomization.

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

La
yo

ut
s

Number of identical occurrences

Figure 5-26: Repetitiveness of generated cabin layouts

The generated solutions cover a range of number of PAX seats from 141 to 180. Figure 5-27 shows
the relation between the number of PAX seats and the mean values of service ratios and pitch. The
average pitch value of the generated layouts decreases with an increasing number of PAX seats. This
is simply because more seat rows have to be placed in the cabin leaving less space, i. e. pitch, for
every row. Further, it can be said that the service ratios increase with increasing number of PAX seats.
This observation is in accordance with the definition of service ratio on page 113; a higher number
of passengers have to share the service facilities, which is expressed with a higher service ratio value.
Further, with increasing number of seats also the available space for adding service facilities decreases.

0

10

20

30

40

50

60

70

141 147 153 159 165 171 174 180

M
ea

n
va

lu
es

 o
f

se
rv

ic
e

ra
tio

 a
nd

 p
itc

h

Number of seats

PAX per
lavatory

PAX per
cabin attendant
Pitch
(in inch)
PAX per
trolley

Figure 5-27: Relationship between number of PAX seats and mean values of service ratio and pitch

The generated cabin layout solutions can be classified according to the typical values of the layout pa-

122 5 Development of the software prototype booggie

rameters presented in Table 5-1 as shown in Table 5-2. The table reads as follows: 36 solutions are
high density solutions with respect to their number of PAX seats, i. e. between 165 and 180. Most of
the layout parameters are within the bounds of high-density- or high-comfort-solutions. Regarding the
service ratios, some solutions exceed these boundaries (very high density and very high comfort), e. g.:
18 solutions are very high density solutions with respect to the PAX per lavatory ratio, i. e. that value
is higher than 60. Due to validity checks, these solutions are not invalid but rather unconventional and
might be worth further inspection by the cabin layout designer. Due to these checks, no solutions occur
with more than 180 PAX seats as they would violate security regulations. Regarding the PAX per cabin
attendant ratio it is striking that more than 80% of the solutions are out of the bounds of typical val-
ues. This number can lead to the conclusion that CAS are either over- or under-represented in the CIC
definitions used. The fact that 18 solutions have a PAX per trolley ratio that is above the typical high
comfort ratio leads to the conclusion of an over-representation of galleys in the CIC definition (trolleys
are contained in galleys).

Table 5-2: Classification of the synthesized solutions according to the typical layout parameters presented
in Table 5-1

> 180 165 - 180 159 - 136 < 136
– 36 45 –

< 28 28 - 31 32 - 36 > 36
– 27 54 –

> 60.0 55.0 - 60.0 45.3 - 53.0 < 45.3
18 20 25 18

> 20.8 14.3 - 20.8 10.4 - 13.1 < 10.4
– 20 24 25

> 33.6 < 30.0
33 33

Very high
density

Very high
comfortboth

High comfortHigh density

PAX per cabin attendant

PAX per trolley

PAX per lavatory

Pitch (in inch)

Number of solutions, classified according to layout parameters

Number of PAX seats 160 - 164

55.1 - 52.9

15

12

–

–

13.2 - 14.2

30.0 - 33.6

In general, it can be said that the random-based selection of CICs leads to unconventional solutions, as
shown in Table 5-3. This table reads as follows: Two solutions have five (x = 5) layout parameter values
that are typical for conventional high density solutions. Out of the 81 layouts, only four layouts are
within the limits of all five typical layout parameters (left column, x = 5); 21 solutions have four typical
layout parameters. Hence, although conventional solutions occur, the majority of the synthesized cabin
layouts can be characterized by a mixture of high density and high comfort layout parameters.

Table 5-3: Distribution of solutions according to the occurrence of typical layout parameters presented
in Table 5-1

x = 5 x = 4 x = 3 x = 2 x = 1
High density 2 9 14 13 16
High comfort 2 12 22 17 17

Number of solutions with x typical layout parameters

conventional unconventional

In the following, three cabin layouts are discussed with their respective layout parameters and noteable
layout properties. For clarity, only the crucial physical items are displayed that are taken into account for
the calculation of the layout characteristics enabling the comparison of cabin layouts.

Solution 46 contains 141 PAX seats with a pitch value of 36" and is a rather conventional high comfort

5.6 Discussion 123

cabin layout; three layout parameters are within the bounds of typical high density layouts and two
parameters (PAX per lavatory and PAX per cabin attendant) are even in the range of very high comfort
cabin layouts. The asymmetry in the front area (Zone A) is noteworthy. It is due to an almost empty
subzone A2_RH that only contains a partial passageway and an assist space but no other physical items.
Because of that, the first row of subzone B1_RH is moved forward allowing to place one additional triple
seat block on the right side.

Zone A

Zone B Zone C

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

D
G

3

LAV

CAS ASPPPW

D
G

4

ASPPPW

ASP PPW

CAS

CAS

Legend

· ASP: Assist space

· CAS: Cabin attendant seat

· DG3: Dry galley with three trolleys

· DG4: Dry galley with four trolleys

· LAV: Lavatory

· PPW: Partial passageway

· TSB: Triple seat block

· WG4: Wet galley with four trolleys

Layout parameters:

· Number of PAX seats: 141 high comfort

· Pitch: 36" high comfort

· PAX per lavatory: 35.25 very high comfort

· PAX per trolley: 12.81 high comfort

· PAX per cabin attendant: 28.2 very high comfort

PPWASP

LAV

LAV
LAV

W
G

4

Figure 5-28: Solution 46 – Rather conventional high comfort cabin layout

Solution 44 contains 180 PAX seats with a pitch value of 28" and is a conventional high density cabin
layout; four layout parameters are within the bounds of typical high comfort layouts and one parameter
(PAX per cabin attendant) is even in the range of very high density cabin layouts. However, adding
one cabin attendant seat in subzone C1_LH would not require any other modifications in the layout and
would shift that property into the high density bounds. It is remarkable in this solution that space remains
unused with a depth of 34.08" at the end of Zone B. Although the unused space would suffice to add an
additional row, i. e. two triple seat blocks, that would cause a violation of the maximum limit of 180
PAX seats and is therefore not done. However, that unused space could be used to add physical items,
e. g. lavatories and galleys, to Zone A and to increase the service quality for the passenger.

Solution 72 can be seen as a solution that is similar to solution 44 but uses the unused space in Zone B
for additional physical items in Zone A. Thereby, this layout shows some high density characteristics as
it contains 180 PAX seats with a pitch value of 28". In contrast, the other service ratios are within the
(very) high comfort bounds, whereas the PAX per cabin attendant value is the overlapping range between
high density and high comfort. A similar layout could not be found in the cabin layout statistics of EADS
and is, therefore, considered as an unconventional solution that might be worth further investigation.

5.6 Discussion

From the industrial perspective, the application of object-oriented graph grammars implemented in boog-
gie was a success as outlined in the final project assessment in the Appendix 9.6. This is especially
noteworthy considering the fact that this study was primarily carried out on the part of EADS with only

124 5 Development of the software prototype booggie

Zone A Zone B Zone C

Unused space: 34,08"

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

LAV

CAS ASPPPW

D
G

4

ASPPPW

ASP PPW

CAS

CAS

PPWASP

LAV

LAV

W
G

4
D

G
3

Layout parameters:

· Number of PAX seats: 180 high density

· Pitch: 28" high density

· PAX per lavatory: 60 high density

· PAX per trolley: 16.36 high density

· PAX per cabin attendant: 36 very high density

Legend

· ASP: Assist space

· CAS: Cabin attendant seat

· DG3: Dry galley with three trolleys

· DG4: Dry galley with four trolleys

· LAV: Lavatory

· PPW: Partial passageway

· TSB: Triple seat block

· WG4: Wet galley with four trolleys

Figure 5-29: Solution 44 – Conventional high density cabin layout

Zone A Zone B Zone C

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B

T
S

B
ASP PPW

CAS

CAS

PPWASP

LAV

LAV L
A

V
W

G
4T
S

B

LAV

CAS ASPPPW

D
G

4

ASPPPW

T
S

B

W
G

4
D

G
3

Layout parameters:

· Number of PAX seats: 180 high density

· Pitch: 28" high density

· PAX per lavatory: 45 very high comfort

· PAX per trolley: 12 high comfort

· PAX per cabin attendant: 30 high density, high comfort

Legend

· ASP: Assist space

· CAS: Cabin attendant seat

· DG3: Dry galley with three trolleys

· DG4: Dry galley with four trolleys

· LAV: Lavatory

· PPW: Partial passageway

· TSB: Triple seat block

· WG4: Wet galley with four trolleys

Figure 5-30: Solution 72 – Unconventional cabin layout with mixed layout characteristics

little support from the author. As shown in Table 5-3, the generation of human-competitive solutions is
possible: Known solutions are generated that are within the bounds of conventional layout parameters
as well as new, or unconventional, solutions that are worth further inspection. Thereby, this case study
corroborates the achievement of contribution 5. However, there are still numerous aspects that can be
included in the configuration of aircraft cabins, as for example:

∙ the placement of the on-wing emergency exits and the adjustment of the corresponding PAX seats.

∙ a differentiation between business class and economy class seats and an optimized distribution of
the respective seat numbers.

∙ the consideration of more CICs.

5.6 Discussion 125

In general, it can be said that this study can be further pursued by increasing the level of detail. Ex-
panding the hierarchy of inheritance in the metamodel is the straightforward way to achieve a more
fine-grained representation. For example, expanding the element type PAXSeat with the descendants
First, Business and Economy would not require a reformulation of the existing rules. Another point men-
tioned in EADS’ final project assessment is a further increase of expressiveness of the metamodel. The
ultimate goal would be to cover the same features, as for example, in an OWL ontology and to allow the
application of reasoners based on that. Logical constraints or geometrical dependencies, e. g. to forbid a
galley being placed opposite to a seat row, can efficiently be represented using an ontology’s descroption
logic. Thereby, the constraints that are checked in the Check... valid ?-rules could be represented using
the model-based representation itself. As a reply to that request, it can be said that ports could be used
to incorporate some of these requirements. As discussed earlier, ports can be used to formulate topo-
logical constraints and can impose multiplicity constraints. Solving these constraints would require the
integration of constraint solving algorithms, which is left for future work.

The software development of booggie strongly benefited from this case study as the software could be
tested in a real industrial environment. Potential improvements and shortcomings were identified that
had to be addressed in the development. Within the case study, all components and features of booggie
were used and, thereby, tested in an industrial application context. All software requirements presented
in Section 5.1 are implemented. Thus, it seems justifiable to state that the current state of booggie can
be regarded as feature complete. A formal evaluation of the software, such as proposed by Bracewell &
Shea (2001), should be targeted in future work.

The fact that known and new meaningful solutions can be generated and that the software prototype is
mature enough such that EADS engineers can work with it with little instruction, leads to the conclusion
that the Expected Contributions 5 (human-competitive solutions) and 6 (mature software prototype) are
achieved. Nevertheless, some shortcomings still persist in booggie and should be addressed in future
work. To promote a wider application in industry, non-functional requirements regarding the stability
and performance are essential. The most important issues are briefly discussed in the following.

While generating solutions with large graphs, e. g. aircraft cabins, booggie runs out of memory. This is-
sue can be seen from two perspectives and both should be taken into consideration for future work. First,
booggie cannot be executed as 64-bit software, which limits the potential available working memory to
4 GB. Regarding the overhead for the operating system and required auxiliary software, approximately
2.5 GB should be available. However, booggie crashes typically when 1.4 – 1.6 GB of the working
memory is used. Second, booggie’s memory usage should be decreased. Especially the internal graph
representation can be reduced.

Representing the connection of two elements using ports requires four graph nodes (two elements and
two ports) and three edges. Instead, the use of typed edges, which would contain the same information
as represented in the ports, would only require two nodes for the elements themselves and one edge.
The amount of overhead that is induced by this representation can be demonstrated with the cabin layout
in 5-23: This layout consists of 377 elements and 377 relations representing the essential information of
this design. In order to adopt the port-based representation, 1143 nodes for representing port and 1143
DJoint- and UJoint-edges are required. Hence, to capture the essential 754 elements, 3040 elements are
required. The following steps are advised to tackle this issue: As a short-term solution, the compilation
of booggie as 64-bit software and the investigation of memory leaks should be addressed. A more
substantial improvement could be achieved by redeveloping the applied port-based graph data structure.

126 5 Development of the software prototype booggie

It should be possible to exhibit the same expressiveness as formally described for the booggie modeling
language in Section 5.2, using typed edges instead of pushing up the number of graph elements by using
a node for every port.

Support for the visual definition of graph transformation rules, as demanded in SWReq 2 and SWReq 6
is implemented in the Rules perspective. This feature allows to apply booggie in the wider engineering
domain where designers are lacking the knowledge and motivation to use a programing language for
defining rules. So far, the Rules perspective only supports the definition of basic rule features. A high
priority should be placed on the further development of this functionality. It is the main point where
intuitive software support can deliver a considerable contribution to bring this approach to a larger user
group. It is suggested to investigate the approach of story diagrams as presented by Fischer et al.
(2000) as an alternative visualization approach for representing rules and rule sequences as flow charts.
Nevertheless, a tremendous effort is required to consider all features of the applied rule language in a
visual rule interpreter.

6 Discussion and future work

The research presented in this thesis contributes to the goal of the CDS research community to bring CDS
approaches into "use in every day design practice" (Chakrabarti et al., 2011). As discussed in Chapter 1,
the conceptual design phase could benefit from the support of CDS methods since it is characterized by
high uncertainty and requires a continuous adaption and modification of design artifacts, such as product
models. The promise of current CDS research complies to a large extent with the needs for computational
support in the conceptual design phase. Nevertheless, it can be stated that the acceptance of this research
field, especially in an industrial context, is still low.

The reasons for the weak dissemination of CDS research for supporting the conceptual design phase
are summarized in five research issues in Section 1.1. These are the motivating factors to conduct this
research. The principal reasons are the inefficiency of knowledge formalization (Research Issue 1) re-
quiring a high effort to transfer expert knowledge into the computer. Research Issue 2 states that the
limited scope of application impedes tackling full scale industrial problems. Research Issue 3 indicates
that existing design knowledge and methods are not reused so that using CDS approaches starts with cre-
ating a new process and with the formalization of first principles instead of building on previous efforts.
Fourth, the lack of using modeling standards and tool integration corroborates the weak dissemination
as it hinders integration of CDS prototype software in tool chains and development processes (Research
Issue 4). Fifth, as CDS implementations are primarily proof-of-concept prototypes, their maturity is low
and not suited for industrial applications (Research Issue 5).

In the following, the contributions of this research are summarized that aim to address these research
issues and to achieve the research goals as discussed in Section 1.2. Further, limitations and opportunities
for improvement and future work are also discussed.

6.1 Research contributions

It can be seen in the evolution of expert systems that formalizing knowledge using a hybrid formalization,
that builds on model-based and rule-based paradigms, provides advantages in terms of the efficiency
and effectiveness of the knowledge representation. Such a representation has been developed in the
approach of object-oriented graph grammars as presented in Chapter 3. Contribution 1 is achieved as
object-oriented graph grammars are more efficient than previous knowledge representations in CDS since
they:

∙ allow the formulation of generic design rules and therefore keep the rule set small and manageable.

∙ are based on a clear and simple process for the formalization of engineering knowledge and provide
guidance for the human designer to use this approach.

∙ incorporate a flexibly expandable metamodel for the formalization of evolving engineering knowl-
edge.

128 6 Discussion and future work

∙ build on graph transformations for the generation and modification of models. This method is com-
putationally efficient and serves as a foundation for developing elaborate search and optimization
algorithms.

Graph-based models are widespread in the engineering domain. Hence, building on typed graphs as an
underlying model representation, the developed approach of object-oriented graph grammars is an effec-
tive means to represent knowledge for a wide range of applications and for multiple levels of abstraction.
The effectiveness of the representation is shown in the validation study in the Section 3.3 and validates
Contribution 2 (high effectiveness of object-oriented graph grammars). As discussed in the review of
previous work in Chapter 2.4, this is a key contribution compared to previous work.

This hybrid representation is inspired by paradigms from object-oriented programming. As discussed
in Section 3.2, some of the advantages of object-oriented programming, compared to imperative pro-
gramming, can analogously be seen here in terms of extendibility, ease of use, efficiency, reusability and
compatibility.

To avoid the necessity of formalizing design knowledge from first principles, a method is developed
(presented in Chapter 4) that supports automatically formalizing knowledge from design catalogs, which
contain the description of physical effects using equation-based representations and constitutes Contri-
bution 3 (formalization of design catalogs). The method of automatically assigning abstraction ports
to physical effects based on their equation structure also contributes to the goal of making knowledge
formalization more efficient (Research Goal 1). This approach is validated with the formalization of two
design catalogs and a simple software prototype.

The software prototype booggie implements the method of object-oriented graph grammars based on a
formal modeling language that is mathematically defined and described in Section 5.2. Formal modeling
languages that include a metamodel for the definition of the modeling elements have the advantage that
they can be transferred into other representations. This approach, called model transformation, serves
as foundation for realizing a mapping to other modeling languages, e. g. the increasingly important
language SysML, and for interfacing with other tools, e. g. simulation tools. Thereby, Contribution 4 is
accomplished.

Using previous work, e. g. design catalogs and software libraries, not only increases the efficiency for
formalizing knowledge but also helps to develop mature software. Previous CDS implementations are
typically built from the ground up and often do not leave the prototype stage. booggie, in contrast,
is built on two open-source libraries for graph transformation and graph visualization and constitues
Contribution 6. The development of a tool that exhibits such high performance in graph transformation
and in 3D-graph rendering would not have been possible within this limited time frame and shows the
potential of open-source software.

This research has been validated with two case studies: the synthesis of product architectures for hybrid
automotive powertrains and the synthesis of aircraft cabin layouts. The developed method, implemented
in the software prototype booggie, allows systematic exploration of the solution space. This serves
primarily two purposes: first, to gain an overview of known and potentially new solutions; second, to
stimulate the designer to think outside of the box and to promote thinking about new possibilities. There-
fore, it can be said that the developed approach supports generation of human-competitive solutions, cf.
Contribution 5, and has successfully been applied to industrial design problems.

6.2 Future work 129

6.2 Future work

Limitations of the developed approaches are discussed at the end of Chapters 3, 4 and 5. Nevertheless,
overarching issues are briefly discussed in this section.

This research focused on the modeling, synthesis and evaluation of graph-based topologies. Parametric
characteristics of these topologies and of their individual components were out of the scope of this thesis.
For example in the hybrid powertrain case study in Section 3.3, the conversion of rotational speed and
torque, which is, e. g., inevitable when using a combustion engine, is disregarded on all abstraction
levels and leads to the absence of a gearbox. The lack of considering quantitative aspects represents a
key limitation of this work and leaves room for future work. Extending the current work in this direction
can be divided into three categories: modeling, synthesis and evaluation.

Integrating parameters into the metamodel to support parametric modeling, as depicted in Figure 3-6, and
making them available for manually modeling product architectures does not pose any problems, as the
modeling of various kinds of value types is fully supported. Thus, components could be quantitatively
characterized assigning parameters and concrete values to them. For example, all components could
inherit by default from a generic Volume element type that comprises parameters such as volume, mass,
density and center of gravity. Physical effects could also be characterized by their typical operation
ranges, e. g. a power limit.

Also with respect to the method presented in Chapter 4, quantitative characteristics of the physical effects
are not considered. The geometric scalability of a physical effect, for example, is disregarded. Further,
the detection of an effect’s dominance in the case that multiple abstraction ports are assigned, e. g. for
the piezo effect, is not supported. However, in the design process step of assigning physical effects to
functions, the aim is to investigate the solution space for possible alternatives (Ponn& Lindemann, 2011)
and to consider quantitative characteristics as subordinated. The approach shown provides for this goal
a foundation for a computational approach.

Regarding the synthesis of models with quantitative characteristics, object-oriented graph grammars can
serve as a foundation for modeling and solving constraint satisfaction problems (CSP). As discussed in
Section 2.3.2, the algorithmic stream of CSP research shows potential for combining a graph-based rep-
resentation with constraint modeling. Research efforts in that direction are under way to combine object-
oriented graph grammars and CSP to automatically generate parameterized designs (Münzer et al.,
2012). This shows the potential of this approach; it also uses hybrid automotive powertrains as the
application scenario. It is planned to further develop this research towards a CSP library for booggie.

Once parametric models are generated, the automated simulation is an obvious next step for the quan-
titative assessment of product architectures. The approach of model transformation can be integrated to
transform a product architecture into a simulation model. Figure 6-1 shows the transformation of a par-
allel hybrid powertrain product architecture model into the respective simulation model. A graph-based,
or block-oriented, modeling approach can be used such as applied in the simulation language MODEL-
ICA48 or in the simulation tool AMESim49. The advantage in doing so is due to the fact that graph-based
simulation models can be synthesized computationally, based on simulation knowledge formalized in

48Website of the MODELICA association: http://www.modelica.org
49Company website: http://www.lmsintl.com/imagine-amesim-suite

http://www.modelica.org
http://www.lmsintl.com/imagine-amesim-suite

130 6 Discussion and future work

graph grammars. The advantages for the conceptual design phase could be immense, e. g. synthesiz-
ing fully parameterized solutions in response to changing customer requirements or investigating new
product architectures in an early stage.

I3
R

Combustion

engineI2 R
RClutch R TWheels

O

R
Electrical

machine
I4

Product architecture

model

Simulation model

Graph grammar-

based model

transformation

Metamodel 2

Simulation

Combustion engine

Differential gear

Clutch and gearbox

Electrical machine

Battery

Combustion engine

Metamodel 1

FBS

Simulation environment

Instances of

Instances of

Crank shaft
inertia

Figure 6-1: Model transformation of a product architecture into a simulation model, e. g. in AMESim

The following steps have to be performed to establish an integration of simulation into the synthesis of
product architectures:

1. Definition of a simulation metamodel: Just as all modeling elements for synthesizing a FBS*
product architecture are defined in the metamodel, cf. Figure 3-6, the modeling elements for
creating simulation models have to be defined in a simulation metamodel. Existing libraries of
simulation tools and languages are structured in a modular way. Therefore, the individual element
types and their potential connections, i. e. port types, can be identified and a metamodel can be
created in the applied representation.

2. Definition of model transformation rules: Once metamodels for both modeling domains (FBS*
and simulation) are defined, rules can be formulated that capture the knowledge for mapping com-
ponents of the product architecture model to the simulation model. This is primarily the part where
expertise about the generation of simulation models is required. For example, the simulation of
a combustion engine does not only require one single simulation block but various elements for
taking the physical properties into account, e. g. the inertia of the crank shaft, see Figure 6-1. Fur-
ther, the environment for running a simulation study can be generated based on the definition in a
graph grammar rule, such as a driving cycle or vehicle properties. These rules provide the model
transformation rule set.

3. Tool integration: Based on the application of model transformation rules, all the content required
for running simulation studies is contained in the model. However, no tool would be able to run a
simulation because the model is not represented in a compatible data format. Fortunately, current

6.2 Future work 131

simulation tools are equipped with application programming interfaces (API) and can hence be
accessed from the outside. This can be used for an integration with booggie.

Previous work on the automated composition of mechatronic simulation models shows the feasibility of
the outlined approach. Eigner & Zafirov (2009) describe a method to automatically derive simulation
models out of function-based descriptions of production facilities. Paredis et al. (2001) adopt a port-
based approach to compose simulation models taking geometric information from CAD models into
consideration.

To extend the scope of industrial applications but also to integrate additional domains, e. g. service,
aspects from model-based systems engineering should be considered. The link to the formal modeling
language SysML (Wölkl & Shea, 2009; Kruse et al., 2012) could provide straightforward integration
with advanced modeling environments. Interfacing with other disciplines, e. g. requirements engineer-
ing. In this case, the modeling foundation of SysML is an underlying graph-based representation.

The integration of CSP, simulation and SysML presents primarily a challenge in the conversion of mod-
els, i. e. the transformation of model representations. The ability to convert between modeling languages
is a basic prerequisite for any implementation issue, such as tool integration, to be tackled. The imple-
mentation of model transformation approaches calls for a formal language definition. Concerning this
matter, the formal definition of the booggie modeling language is presented in Section 5.2.

The approach of object-oriented graph grammars directly led to the implementation of booggie. The
validation study, the synthesis of hybrid powertrains, has also been realized based on booggie. In contrast,
the method for automatically assigning abstraction ports to functions and physical effects is not yet
incorporated in booggie. A comprehensive validation study bringing together the results described in
the Chapters 3, 4 and 5 could not have been accomplished within the scope of this thesis. However,
the method is compatible and the implementation is straightforward as abstraction ports are just another
type of port. The automated assignment of abstraction ports to functions and physical effects could be
understood as a pre-processing of the metamodel. Thus, the definition of physical effects as modeling
elements in the metamodel could be automated and could guarantee that the metamodel is kept in sync
with an equation-based description of available physical effects. Implementing this as an add-on to
booggie would increase the versatility of booggie as a product concept generation tool.

This research combines a rule-based representation with a model-based presentation. Further extensions
to the model-based representation can also be considered. One direction is an increase of expressiveness
of the metamodel and the further development towards the integration of description logics. Logical
reasoners could be applied to answer questions like Are there any solutions for a given port-matching
problem? and could answer them with certainty. Ports are a small, first step in that direction but using
formal ontology languages could allow capturing logical relations on a more expressive foundation that
is compatible with logical reasoners. The challenge here is to establish consistency and interoperability
between the grammar-oriented metamodel representation and an ontology-based representation. If this
is accomplished, logical reasoners could be an alternative, or complementary, approach to graph trans-
formation. Current research efforts are targeted at solving port-matching problems not based on graph
transformation rules but interpreting them as satisfiability problems. Hence, this can be solved using
so-called SAT solvers. First results (Münzer, 2010b) show that this is a promising step to strengthen the
model-based side of the hybrid knowledge representation.

132 6 Discussion and future work

As a final conclusion, it is expected that graph-based representations will continue to play a major role
in engineering design and especially in the conceptual design phase. The trend towards products cover-
ing multiple domains continues and requires domain-neutral modeling approaches. Further, the research
field of model-based systems engineering is constantly gaining significance as a response to increasing
complexity of products and development processes. It emphasizes the use of standard modeling lan-
guages, such as SysML, or domain-specific languages, which all build on graph-based representations.
On the other hand, computational support for handling graphs will also increase as there is a signif-
icant need to efficiently analyze massive graph structures, e. g. derived from social networks. In the
future, a large fraction of CDS research should build on graph-based representations. Rapid progress can
only be expected if the efforts from the field of computer science, i. e. libraries, tools, algorithms, are
leveraged.

As discussed in Section 2.5, the current state of the art in CDS research is reminiscent of the situation in
artificial intelligence research during the transition of the first to the second generation of expert systems
in the early 1980s. After the deficiencies of the first expert system generation were remedied, continued
success of the second generation could be observed. The vision for CDS researchers is to draw on
the lessons learned from expert systems, to overcome the shortcoming of the first generation of CDS
approaches and to build a solid foundation for the development of the second generation of CDS. The
consideration of this historical analogy and the fact that constantly evolving computational technologies
are freely available to develop powerful CDS software, should make CDS researchers confident that the
ambition of bringing CDS approaches into "use in everyday design practice" (Chakrabarti et al., 2011)
is achievable.

7 Conclusion

Computational Design Synthesis (CDS) aims to support product development through formalization and
automation of knowledge-intensive design tasks. Especially the conceptual design phase could profit
from CDS approaches as this phase is characterized by high uncertainty making it difficult to evaluate
design quality and to systematically explore the set of solutions. However, CDS still has little acceptance
in industry primarily due to the high effort required for knowledge and task formalization, the limited
scope of application of CDS approaches, the lack of reuse of existing paper-based design knowledge,
the lack of modeling standards and tool integration, and a low maturity of software tools. The promising
opportunities of CDS to increase development efficiency and innovative power provide the motivation to
address these problems in this thesis and to contribute to the goal of increasing the applicability of CDS
in every day design practice.

A historical analogy to the development of expert systems leads to the hypothesis that a combination
of rule- and model-based knowledge formalization is beneficial to address these research issues. This
assumption is corroborated with a review of the related state of the art coming to the conclusion that such
a hybrid knowledge can combine the advantages of rule- and model-based representations.

Chapter 3 introduces the approach of object-oriented graph grammars for the computational synthesis
of graph-based product architectures using a Function-Behavior-Structure representation. It allows to
capture declarative engineering knowledge upfront in a port-based metamodel and to formulate generic,
procedural design rules in a graph grammar. The contributions of increasing efficiency and effective-
ness of knowledge formalization are validated through the synthesis of product architectures of automo-
tive hybrid powertrains. A solution space with 3360 powertrain architectures is generated and noteable
solutions are identified through the search for specific solution characteristics, e. g. serial or parallel
configurations.

Chapter 4 presents an approach to characterize and integrate physical effects contained in design cata-
logs. Through an automated analysis of the equation structure, abstraction ports are assigned to physical
effects and represent valid mappings between functional operators and physical effects. The contribution
regarding the formalization of paper-based engineering knowledge is validated with the formalization of
137 physical effects of two design catalogs and the development of a software prototype that searches
suitable physical effects for a given function.

The implementation of the object-oriented graph grammar approach in the software booggie is presented
in Chapter 5. This software is built on a formal language definition (the booggie modeling language) that
represents the foundation for achieving the contributions of model transformation and tool integration.
booggie is a modular, open-source and platform-independent software that incorporates an efficient graph
transformation library and a 3D graph visualization library. The automated generation of aircraft cabin
layouts validates the practical usability of the developed software platform in an industrial context and
illustrates the contributions discussed in the previous chapters.

The expected contributions are achieved leaving, nevertheless, potential for improvements and future
work. Besides an increase of the software maturity, future work should include an integration of object-
oriented graph grammars and the automated assignment of abstraction ports in one implementation,

134 7 Conclusion

the extension of the synthesis of product architectures towards parametric synthesis and evaluation using
simulation, model transformation for the transformation towards other modeling languages, e. g. SysML,
and the integration of SAT solvers to enable the solution of logical port-matching problems.

8 References

Aamodt & Plaza 1994
Aamodt, A.; Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and
System Approaches. Ai Communications 7 (1994) 1, pp. 39–59. ISSN: 09217126.

Agarwal & Cagan 1998
Agarwal, M.; Cagan, J.: A blend of different tastes: the language of coffeemakers. Environment and
Planning B: Planning Design 25 (1998) 2, pp. 205–226. ISSN: 02658135.

Agarwal et al. 2000
Agarwal, M.; Cagan, J.; Stiny, G.: A micro language: generating MEMS resonators by using a coupled
form - function shape grammar. Environment and Planning B: Planning and Design 27 (2000) 4, pp.
615–626. ISSN: 0265-8135.

Agu & Campbell 2010
Agu, D. I.; Campbell, M. I.: Automated Analysis of Product Disassembly to Determine Environmental
Impact. International Journal of Sustainable Design in press (2010) 3, pp. 241–256. ISSN: 17438284.

Ahmed et al. 2005
Ahmed, S.; Kim, S.; Wallace, K. M.: A Methodology for Creating Ontologies for Engineering Design.
In: Volume 3: 25th Computers and Information in Engineering Conference, Parts A and B, vol. 2005,
pp. 739–750. ASME 2005. ISBN: 0-7918-4740-3. ISSN: 15309827.

Alber & Rudolph 2003
Alber, R.; Rudolph, S.: 43"-A generic approach for engineering design grammars. In: AAAI 2003
Spring Symposium. Palo Alto, USA 2003.

Althoff et al. 1989
Althoff, K.; Kockskämper, S.; Traphöner, R.; Wernicke, W.; Faupel, B.: Knowledge acquisition in the
domain of CNC machine centers; the MOLTKE approach. In: Boose, J.; Gaines, B.; Ganascia, J.-
G. (Eds.): EKAW-89; Third European Workshop on Knowledge-Based Systems, pp. 180–195. Paris,
France 1989.

Altshuller 1984
Altshuller, G. S.: Creativity as an Exact Science. Amsterdam, The Netherlands: Gordon and Breach
1984. ISBN: 0-677-21230-5.

Andreasen 1992
Andreasen, M. M.: Designing on a ’Designers Workbench’ (DWB). Proceedings of the 9th WDK
Workshop (1992).

Andreasen & Hein 1987
Andreasen, M. M.; Hein, L.: Integrated product development, Sadhana (India), vol. 22. Berlin, Ger-
many: Springer 1987. ISBN: 3-540-16679-3.

136 8 References

Antonsson & Cagan 2001a
Antonsson, E. K.; Cagan, J. (Eds.): Formal Engineering Design Synthesis. Cambridge, UK: Cam-
bridge University Press 2001. ISBN: 0-521-79247-9.

Antonsson & Cagan 2001b
Antonsson, E. K.; Cagan, J.: Introduction. In: Antonsson, E. K.; Cagan, J. (Eds.): Formal Engineering
Design Synthesis. Cambridge, UK: Cambridge University Press 2001. ISBN: 0-521-79247-9.

Baader 2010
Baader, F.: Basic Description Logics. In: Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
Patel-Schneider, P. F. (Eds.): The Description Logic Handbook, chap. 2, pp. 47–104. Cambridge, UK:
Cambridge University Press 2010, 2nd edition. ISBN: 978-0-521-15011-8.

Baader et al. 2010
Baader, F.; Küsters, R.; Wolter, F.: Extensions to Description Logics. In: Baader, F.; Calvanese,
D.; McGuinness, D. L.; Nardi, D.; Patel-Schneider, P. F. (Eds.): The Description Logic Handbook,
chap. 6, pp. 237–282. Cambridge, UK: Cambridge University Press 2010.

Barletta & Hennessy 1989
Barletta, R.; Hennessy, D.: Case adaptation in autoclave layout design. In: Hammond, K. (Ed.): Pro-
ceedings of the DARPA CaseBased Reasoning Workshop, pp. 203–207. DARPA, Morgan Kaufmann
1989.

Barr & Feigenbaum 1982
Barr, A.; Feigenbaum, E. A. (Eds.): The Handbook of Artificial Intelligence, vol. 18. Los Altos, CA,
USA: Kaufmann 1982.

Beierle & Kern-Isberner 2008
Beierle, C.; Kern-Isberner, G.: Methoden wissensbasierter Systeme. 4th edition, Wiesbaden, Ger-
many: Vieweg+Teubner Verlag 2008. ISBN: 3834805041.

Berkovich et al. 2009
Berkovich, M.; Leimeister, J. M.; Krcmar, H.: An empirical exploration of requirements engineering
for hybrid products. In: XVIIth European Conference on Information Systems, ECIS 2009. Verona,
Italy 2009.

Bettig & M. Hoffmann 2011
Bettig, B.; M. Hoffmann, C.: Geometric Constraint Solving in Parametric Computer-Aided De-
sign. Journal of Computing and Information Science in Engineering 11 (2011) 2, p. 021001. ISSN:
15309827.

Bolognini et al. 2007
Bolognini, F.; Seshia, A. A.; Shea, K.: Exploring the Application of Multidomain Simulation-based
Computational Synthesis Methods in MEMS Design. In: Bocquet, J.-C. (Ed.): International Confer-
ence on Engineering Design, ICED ’07, pp. 81–82. Glasgow, United Kingdom: The Design Society
2007.

Boolos et al. 2007
Boolos, G. S.; Burgess, J. P.; Jeffrey, R. C.: Computability and Logic. 5th edition, New York, NY,
USA: Cambridge University Press 2007. ISBN: 9780521701464.

137

Borgida et al. 1989
Borgida, A.; Brachman, R. J.; McGuinness, D. L.; Resnick, L. A.: CLASSIC: a structural data model
for objects. ACM SIGMOD Record 18 (1989) 2, pp. 58–67. ISSN: 01635808.

Bracewell & Shea 2001
Bracewell, R. H.; Shea, K.: CaeDRe: A product platform to support creation and evaluation of ad-
vanced computer-aided engineering tools. In: International Conference on Engineering Design, ICED
’01, pp. 539–546. Glasgow, UK 2001.

Brachman & Schmolze 1985
Brachman, R. J.; Schmolze, J. G.: An overview of the KL-ONE Knowledge Representation System.
Cognitive Science 9 (1985) 2, pp. 171–216. ISSN: 03640213.

Broenink 1999
Broenink, J.: Introduction to Physical Systems Modelling with Bond Graphs. SiE Whitebook on
Simulation Methodologies (1999), pp. 1–31.

Bruegge & Dutoit 2010
Bruegge, B.; Dutoit, A. H.: Object Oriented Software Engineering. Internatio edition, Upper Saddle
River, NJ, USA: Pearson Education, Inc. 2010. ISBN: 978-0138152215.

Bryant et al. 2006
Bryant, C. R.; McAdams, D. A.; Stone, R. B.; Kurtoglu, T.; Campbell, M. I.: A validation study of an
automated concept generator design tool. In: ASME 2006 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2006, pp. 1–12.
Philadelphia, USA 2006.

Cagan 2001
Cagan, J.: Engineering Shape Grammars. In: Antonsson, E. K.; Cagan, J. (Eds.): Formal Engineering
Design Synthesis, chap. 3, pp. 65–92. Cambridge, UK: Cambridge University Press 2001. ISBN:
0-521-79247-9.

Cagan et al. 2005
Cagan, J.; Campbell, M. I.; Finger, S.; Tomiyama, T.: A Framework for Computational Design Syn-
thesis: Model and Applications. Journal of Computing and Information Science in Engineering 5
(2005) 3, pp. 171–181. ISSN: 15309827.

Cagan & Vogel 2001
Cagan, J.; Vogel, C. M.: Creating Breakthrough Products: Innovation from Product Planning to Pro-
gram Approval. Upper Saddle River, NJ, USA: Prentice Hall 2001. ISBN: 978-0139696947.

Campbell et al. 2000
Campbell, M. I.; Cagan, J.; Kotovsky, K.: Agent-Based Synthesis of Electromechanical Design Con-
figurations. Journal of Mechanical Design 122 (2000) 1, pp. 61–69. ISSN: 10500472.

Carbonell 1983
Carbonell, J. G.: Learning by Analogy: Formulating and Generalizing Plans from Past Experience. In:
Michalski, R. S.; Carbonell, J. G.; Mitchell, T. M. (Eds.): Machine Learning An Artificial Intelligence
Approach, no. CMU-CS-82-126 in Machine learning: An artificial intelligence approach, pp. 137–
161. Tioga 1983.

138 8 References

Chakrabarti 2002
Chakrabarti, A. (Ed.): Engineering Design Synthesis. London: Springer 2002. ISBN: 1852334924.

Chakrabarti & Bligh 1994
Chakrabarti, A.; Bligh, T. P.: An Approach to Functional Synthesis of Solutions in Mechanical Con-
ceptual Design. Part I: Introduction and Knowledge Representation. Research in Engineering Design
(1994) 6, pp. 127 – 141.

Chakrabarti et al. 2011
Chakrabarti, A.; Shea, K.; Stone, R. B.; Cagan, J.; Campbell, M. I.; Hernandez, N. V.; Wood, K. L.;
Vargas-Hernandez, N.: Computer-Based Design Synthesis Research: An Overview. Journal of Com-
puting and Information Science in Engineering 11 (2011) 2, pp. 021003–1 – 021003–10. ISSN:
15309827.

Chomsky 1957
Chomsky, N.: Syntactic Structures. Language 33 (1957) 3, pp. 375–408. ISSN: 00978507.

Christensen 2006
Christensen, J. F.: Wither Core Competency for the Large Corporation in an Open Innovation World?
In: Chesbrough, H. W.; Vanhaverbeke, W.; West, J. (Eds.): Open Innovation, chap. 3. New York, NY,
USA: Oxford University Press 2006.

Clancey 1985
Clancey, W. J.: Heuristic classification. Artificial Intelligence 27 (1985) 3, pp. 289–350. ISSN:
00043702.

Cooper & Edgett 2005
Cooper, R. G.; Edgett, S. J.: Lean, Rapid, and Profitable New Product Development. Ancaster,
Canada: Product Development Institute 2005. ISBN: 0973282711.

Corradini et al. 1997
Corradini, A.; Montanari, U.; Rossi, F.; Ehrig, H.; Heckel, R.; Löwe, M.: Algebraic approaches to
graph transformation, Part I: Basic concepts and double pushout approach. In: Rozenberg, G. (Ed.):
Handbook of Graph Grammars and Computing by Graph Transformation - Foundations, vol. 1, pp.
163–245. Singapore: World Scientific 1997. ISBN: 981-02-2884-8.

Crawley et al. 2004
Crawley, E.; de Weck, O.; Eppinger, S. D.; Magee, C.; Moses, J.; Seering, W.; Schindall, J.; Wallace,
D.; Whitney, D. E.: The influence of architecture in engineering systems, 2004.

Dahl et al. 1970
Dahl, O.-J.; Myhrhaug, B.; Nygaard, K.: The Simula-67 Common Base Language. Tech. Rep. S-22,
Norwegian Computer Center, Oslo, Norway, 1970.

Descotte & Latombe 1981
Descotte, Y.; Latombe, J. C.: GARI: A Problem Solver that Plans How to Machine Mechanical Parts.
In: Proc Seventh International Joint Conf Artif Intel, pp. 766–772. 1981.

Dym & Levitt 1991
Dym, C. L.; Levitt, R. E.: Knowledge-Based Systems in Engineering, Lecture Notes in Computer
Science, vol. 5178. New York, NY, USA: McGraw-Hill 1991. ISBN: 0070185638.

139

Eder & Hosnedl 2008
Eder, W. E.; Hosnedl, S.: Design Engineering a Manual for Enhanced Creativity. Boca Raton: CRC
Press 2008. ISBN: 9781420047653.

Ehrlenspiel 2009
Ehrlenspiel, K.: Integrierte Produktentwicklung. 4th edition, München, Germany: Hanser 2009.
ISBN: 3446420134.

Ehrlenspiel et al. 2007
Ehrlenspiel, K.; Kiewert, A.; Lindemann, U.: Kostengünstig Entwickeln und Konstruieren. 6th edi-
tion, Berlin, Germany: Springer 2007. ISBN: 978-3540742227.

Eigner et al. 2012
Eigner, M.; Anderl, R.; Stark, R.: Interdisziplinäre Produktentstehung. In: Anderl, R.; Eigner, M.;
Sendler, U.; Stark, R. (Eds.): Smart Engineering, chap. 2. Berlin, Germany: Springer 2012. ISBN:
978-3642293719.

Eigner & Zafirov 2009
Eigner, M.; Zafirov, R.: Function modelling for efficient generation of mechatronic simulation models
of automated production installations. In: International Conference on Collaborative Mechatronic
Engineering, ICCME ’09. Salzburg, Austria 2009.

Elcock 1990
Elcock, E. W.: Absys: the first logic programming language –A retrospective and a commentary. The
Journal of Logic Programming 9 (1990) 1, pp. 1–17. ISSN: 07431066.

Erden et al. 2008
Erden, M.; Komoto, H.; van Beek, T.; D’Amelio, V.; Echavarria, E.; Tomiyama, T.: A review of func-
tion modeling: Approaches and applications. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 22 (2008) 02, pp. 147–169. ISSN: 0890-0604.

Felfernig & Schubert 2011
Felfernig, A.; Schubert, M.: Personalized diagnoses for inconsistent user requirements. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 25 (2011) 02, pp. 175–183. ISSN:
0890-0604.

Felfernig et al. 2011
Felfernig, A.; Stumptner, M.; Tiihonen, J.: Special Issue: Configuration. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 25 (2011) 02, pp. 113–114. ISSN: 0890-0604.

Fenves et al. 2008
Fenves, S. J.; Foufou, S.; Bock, C.; Sriram, R. D.: CPM2: A Core Model for Product Data. Journal of
Computing and Information Science in Engineering 8 (2008) 1, p. 014501. ISSN: 15309827.

Fenves et al. 2005
Fenves, S. J.; Sriram, R. D.; Subrahmanian, E.; Rachuri, S.: Product Information Exchange: Practices
and Standards. Journal of Computing and Information Science in Engineering 5 (2005) 3, pp. 238–
246. ISSN: 15309827.

140 8 References

Ferreira & Ribeiro 2003
Ferreira, A. P. L.; Ribeiro, L.: Towards object-oriented graphs and grammars. Formal Methods for
Open Object Based Distributed Systems (2003), pp. 16–31.

Fischer et al. 2000
Fischer, T.; Niere, J.; Torunski, L.; Zündorf, A.: Story Diagrams: A New Graph Rewrite Language
Based on the Unified Modeling Language and Java. Theory and Application of Graph Transformations
1764 (2000), pp. 157–167.

Fisher 1987
Fisher, D. H.: Knowledge acquisition via incremental conceptual clustering. Machine Learning 2
(1987) 2, pp. 139–172. ISSN: 0885-6125.

Fowler 2002
Fowler, M.: Patterns of Enterprise Application Architecture, vol. 48. 2nd edition, Amsterdam, The
Netherlands: Addison-Wesley 2002. ISBN: 978-0321127426.

Foxvog 2010
Foxvog, D.: Cyc. In: Poli, R.; Healy, M.; Kameas, A. (Eds.): Theory and Applications of Ontology,
chap. 12, pp. 259–278. Dordrecht, The Netherlands: Springer 2010. ISBN: 978-90-481-8846-8.

French 1999
French, M. J.: Conceptual Design for Engineers. 3rd edition, London, United Kingdom: Springer
1999. ISBN: 1-85233-027-9.

Freuder & Mackworth 2006
Freuder, E. C.; Mackworth, A. K.: Constraint Satisfaction: An Emerging Paradigm. In: Rossi, F.;
Beek, P. V.; Walsh, T. (Eds.): Handbook of Constraint Programming, Foundations of Artificial In-
telligence, chap. 2, pp. 13–27. Amsterdam, The Netherlands: Elsevier Science 2006. ISBN: 978-
0444527264.

Frühwirth & Abdennadher 2006
Frühwirth, T.; Abdennadher, S.: Principles of constraint systems and constraint solvers. ARCHIVES
OF CONTROL SCIENCE 16 (2006) 2, p. 131. ISSN: 12302384.

Fuhs 2009
Fuhs, A.: Hybrid Vehicles and the Future of Personal Transportation. Boca Raton: CRC Press 2009.
ISBN: 978-1-4200-7534-2.

Gamma et al. 1995
Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. Amsterdam, The Netherlands:
Addison Wesley 1995. ISBN: 978-0201633610.

Geiss et al. 2006
Geiß, R.; Batz, G. V.; Grund, D.; Hack, S.; Szalkowski, A.: GrGen: A Fast SPO-Based Graph
Rewriting Tool. In: International Conference on Graph Transformations, pp. 383–397. Natal, Brazil:
Springer 2006. ISBN: 9783540388708.

Geiss & Kroll 2007
Geiß, R.; Kroll, M.: On Improvements of the Varro Benchmark for Graph Transformation Tools. Tech.
Rep. ISSN 1432-7864, Universität Karlsruhe, Karlsruhe, 2007.

141

Gelle & Faltings 2003
Gelle, E. M.; Faltings, B. V.: Solving mixed and conditional constraint satisfaction problems. Con-
straints 8 (2003) 2, pp. 107–141.

Gennari et al. 2003
Gennari, J. H.; Musen, M. A.; Fergerson, R. W.; Grosso, W. E.; Crubezy, M.; Eriksson, H.; Noy, N. F.;
Tu, S. W.: The evolution of Protégé: an environment for knowledge-based systems development.
International Journal of Human-Computer Studies 58 (2003) 1, pp. 89–123. ISSN: 10715819.

Gero 1990
Gero, J. S.: Design prototypes: A Knowledge Representation Schema for Design. AI Magazine 11
(1990) 4, pp. 26–36. ISSN: 07384602.

Gero 2004
Gero, J. S.: The situated function-behaviour-structure framework. Design Studies 25 (2004) 4, pp.
373–391. ISSN: 0142694X.

Gips & Stiny 1980
Gips, J.; Stiny, G.: Production systems and grammars: a uniform characterization. Environment and
Planning B: Planning and Design 7 (1980) 4, pp. 399–408. ISSN: 0265-8135.

Goel et al. 1996
Goel, A.; Bhatta, S. R.; Stroulia, E.: Kritik: An Early Case-Based Design System. In: Maher, M. L.;
Pu, P. (Eds.): Issues and Applications of Case-Based Reasoning in Design, chap. 5, pp. 87–132.
Mahwah: Lawrence Erlbaum Associates 1996. ISBN: 9780805823134.

Gorbea et al. 2010
Gorbea, C.; Hellenbrand, D.; Srivastava, T.; Biedermann, W.; Lindemann, U.: Compatibility Matrix
Methodology Applied to the Identfication of Vehicle Architectures and Design Requirements. In: 11th
International Design Conference, DESIGN 2010, pp. 733–742. Dubrovnik, Croatia 2010.

Gorbea et al. 2008
Gorbea, C.; Spielmannleitner, T.; Lindemann, U.; Fricke, E.: Analysis of Hybrid Vehicle Architectures
Using Multiple Domain Matrices. In: 10th International Design Structure Matrix Conference, DSM
’08. Stockholm, Sweden 2008.

Gruber 1993
Gruber, T. R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5
(1993) 2, pp. 199–220. ISSN: 10428143.

Haralick et al. 1978
Haralick, R. M.; Davis, L. S.; Rosenfeld, A.; Milgram, D. L.: Reduction operations for constraint
satisfaction. Information Sciences 14 (1978) 3, pp. 199–219. ISSN: 00200255.

Haralick & Shapiro 1979
Haralick, R. M.; Shapiro, L. G.: The Consistent Labeling Problem: Part I. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-1 (1979) 2, pp. 173–184. ISSN: 0162-8828.

Haralick & Shapiro 1980
Haralick, R. M.; Shapiro, L. G.: The Consistent Labeling Problem: Part II. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-2 (1980) 3, pp. 193–203. ISSN: 0162-8828.

142 8 References

Hart 1982
Hart, P. E.: Directions for AI in the Eighties. SIGART Newsletter 79 (1982), pp. 11–16.

Hellenbrand & Lindemann 2008
Hellenbrand, D.; Lindemann, U.: Using the DSM to support the selection of product concepts. In:
Kreimeyer, M.; Lindemann, U.; Danilovic, M. (Eds.): 10th International Design Structure Matrix
Conference, DSM ’08. Stockholm, Sweden: Hanser 2008. ISBN: 9783446418257.

Helms et al. 2011
Helms, B.; Schultheiß, H.; Shea, K.: Automated Assignment of Physical Effects to Functions Using
Ports Based on Bond Graphs. In: ASME 2011 International Design Engineering Technical Confer-
ences & Computers and Information in Engineering Conference, IDETC/CIE 2011. Washington DC,
USA 2011.

Helms & Shea 2010
Helms, B.; Shea, K.: Object-Oriented Concepts for Computational Design Synthesis. In: Marjanović,
D.; Štorga, M.; Pavković, N.; Bojčetić, N. (Eds.): 11th International Design Conference, DESIGN
2010, pp. 1333–1342. Glasgow, United Kingdom: The Design Society 2010.

Helms & Shea 2012
Helms, B.; Shea, K.: Computational Synthesis of Product Architectures Based on Object-Oriented
Graph Grammars. Journal of Mechanical Design 134 (2012) 2, pp. 021008-1 – 021008-14. ISSN:
10500472.

Helms et al. 2009
Helms, B.; Shea, K.; Hoisl, F.: A Framework for Computational Design Synthesis Based on Graph-
Grammars and Function-Behavior-Structure. In: ASME 2009 International Design Engineering Tech-
nical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2009, pp.
841–851. San Diego, USA 2009. ISBN: 978-0-7918-4905-7.

Hepperle et al. 2009
Hepperle, C.; Eben, K.; Lindemann, U.: Elements and Ways of Integrated Product Development
Education - Current and Future Challenges. In: International Conference on Engineering Design and
Product Design Education, September. 2009.

Herb 2000
Herb, R.: TRIZ - Der systematische Weg zur Innovation. Landsberg/Lech, Germany: Moderne Indus-
trie 2000. ISBN: 3-478-91980-0.

Hirtz et al. 2002a
Hirtz, J.; Stone, R. B.; Mcadams, D. A.; Szykman, S.; Wood, K. L.: A Functional Basis for Engineer-
ing Deisgn : Reconciling and Evolving Previous Efforts (NIST Technical Note 1447), 2002.

Hirtz et al. 2002b
Hirtz, J.; Stone, R. B.; McAdams, D. A.; Szykman, S.; Wood, K. L.: A functional basis for engineering
design: Reconciling and evolving previous efforts. Research in Engineering Design 13 (2002) 2, pp.
65–82.

Hix & Alley 1958
Hix, C. F.; Alley, R. P.: Physical Laws and Effects. New York, NY, USA: John Wiley & Sons 1958.

143

Hoffmann 2005
Hoffmann, C. M.: Constraint-Based Computer-Aided Design. Journal of Computing and Information
Science in Engineering 5 (2005) 3, p. 182. ISSN: 15309827.

Holt & Perry 2008
Holt, J.; Perry, S.: SysML for Systems Engineering. Herts, UK: The Institution of Engineering and
Technology 2008. ISBN: 0863418252.

Horrocks 2010
Horrocks, I.: Implementation and Optimization Techniques. In: Baader, F.; Calvanese, D.; McGuin-
ness, D. L.; Nardi, D.; Patel-Schneider, P. F. (Eds.): The Description Logic Handbook, chap. 9, pp.
329–373. Cambridge, UK: Cambridge University Press 2010.

Horrocks et al. 2010
Horrocks, I.; Patel-Schneider, P. F.; Welty, C. A.: OWL : A Description-Logic-Based Ontology Lan-
guage for the Semantic Web. In: Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.; Patel-
Schneider, P. F. (Eds.): The Description Logic Handbook, chap. 14, pp. 458–486. Cambridge, UK:
Cambridge University Press 2010.

Hundal 1990
Hundal, M.: A Systematic method for developing function structures, solutions and concept variants.
Mechanism and Machine Theory 25 (1990) 3, pp. 243–256.

Hürsch & Lopes 1995
Hürsch, W. L.; Lopes, C. V.: Separation of Concerns. Tech. Rep., College of Computer Science,
Northeastern University, Boston, MA, USA, 1995.

Infiniti Research 2011
Infiniti Research: Global Computer Aided Engineering Market 2010-2014. Tech. Rep., 2011.

International Organization for Standardization 2004
International Organization for Standardization: Information technology - Metadata registries (MDR)
- Part 1: Framework (ISO/IEC 11179-1), 2004.

Ishii et al. 1995
Ishii, M.; Sekiya, T.; Tomiyama, T.: A Very Large-Scale Knowledge Base for the Intensive Engineer-
ing Framework. In: Mars, N. J. I. (Ed.): Towards Very Large Knowledge Bases, p. 306. Amsterdam,
The Netherlands: IOS Press 1995. ISBN: 9051992173.

Ishii et al. 1993
Ishii, M.; Tomiyama, T.; Yoshikawa, H.: A Synthetic Reasoning Method for Conceptual Design. In:
Wozny, M. J.; Olling, G. J. (Eds.): IFIP TC5/WG5.3 Conference on Towards World Class Manufac-
turing 1993, IFIP Transactions, vol. B-17, pp. 3–16. Litchfield Park, Arizona, USA: North-Holland
1993. ISBN: 0-444-81850-2.

Jakumeit et al. 2010
Jakumeit, E.; Buchwald, S.; Kroll, M.: GrGen.NET. International Journal on Software Tools for
Technology Transfer 12 (2010) 3-4, pp. 263–271. ISSN: 1433-2779.

144 8 References

Jung et al. 2004
Jung, H.-W.; Kim, S.-G.; Chung, C.-S.: Measuring Software Product Quality: A Survey of ISO/IEC
9126. IEEE Software 21 (2004) 5, pp. 88–92. ISSN: 07407459.

Kerzhner & Paredis 2009
Kerzhner, A. A.; Paredis, C. J. J.: Using Domain Specific Languages to Capture Design Synthesis
Knowledge for Model-Based Systems Engineering. In: ASME 2009 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2009.
San Diego, USA 2009.

Kim et al. 2008
Kim, S.; Bracewell, R.; Wallace, K. M.: Some reflections on ontologies in engineering domain. In:
7th International Symposium on Tools and Methods of Competitive Engineering (TMCE 2008). Izmir,
Turkey 2008. ISBN: 978-90-5155-044-3.

Kläger 1993
Kläger, R.: Modellierung von Produktanforderungen als Basis für Problemlösungsprozesse in intel-
ligenten Konstruktionssystemen. Dissertation, Universität Karlsruhe (TH), 1993. Aachen: Verlag
Shaker 1993.

Koller 1994
Koller, R.: Konstruktionslehre für den Maschinenbau. 3rd edition, Berlin, Germany: Springer 1994.

Koller & Kastrup 1998
Koller, R.; Kastrup, N.: Prinziplösungen zur Konstruktion technischer Produkte. 2nd edition, Berlin,
Germany: Springer 1998. ISBN: 3540630600.

Kolodner 1992
Kolodner, J. L.: An introduction to case-based reasoning. Artificial Intelligence Review 6 (1992) 1,
pp. 3–34. ISSN: 0269-2821.

Komoto & Tomiyama 2010
Komoto, H.; Tomiyama, T.: Computational Support for System Architecting. In: ASME 2010 In-
ternational Design Engineering Technical Conferences & Computers and Information in Engineering
Conference IDETC/CIE 2010, pp. 1–10. Montreal, Canada 2010.

Komoto & Tomiyama 2012
Komoto, H.; Tomiyama, T.: A framework for computer-aided conceptual design and its application to
system architecting of mechatronics products (manuscript accepted for publication). Computer-Aided
Design (2012). ISSN: 00104485.

Kruse et al. 2012
Kruse, B.; Münzer, C.; Wölkl, S.; Canedo, A.; Shea, K.: A Model-Based Functional Modeling and
Library Approach for Mechatronic Systems in SysML. In: ASME 2012 International Design Engi-
neering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE
2012. Chicago, USA 2012.

145

Kurtoglu & Campbell 2006
Kurtoglu, T.; Campbell, M. I.: A Graph Grammar Based Framework for Automated Concept Gen-
eration. In: Marjanovic, D. (Ed.): 9th International Design Conference, DESIGN 2006, pp. 61–68.
Glasgow, United Kingdom: The Design Society 2006.

Kurtoglu et al. 2010
Kurtoglu, T.; Swantner, A.; Campbell, M. I.: Automating the conceptual design process: "From black
box to component selection". Artificial Intelligence for Engineering Design, Analysis and Manufac-
turing 24 (2010) 01, p. 49. ISSN: 0890-0604.

Kwasnik 1999
Kwasnik, B. H.: The role of classification in knowledge representation and discovery. Library Trends
48 (1999) 1, pp. 22–47. ISSN: 00242594.

Langer & Lindemann 2009
Langer, S.; Lindemann, U.: Managing Cycles in Development Processes - Analysis and Classification
of External Context Factors. In: International Conference on Engineering Design, ICED ’09, pp.
539–550. Stanford, USA 2009.

Langtangen 2011
Langtangen, H. P.: A Primer on Scientific Programming with Python. Texts in Computational Science
and Engineering, 2nd edition, Heidelberg, Germany: Springer 2011. ISBN: 978-3-642-18365-2.

Leemhuis 2004
Leemhuis, H.: Funktionsgetriebene Konstruktion als Grundlage verbesserter Produktentwicklung.
Dissertation, Fakultät V für Verkehrs- und Maschinensysteme, Technische Universität Berlin, 2004.

Lehmann 1992
Lehmann, F.: Semantic Networks in Artificial Intelligence. In: Lehmann, F. (Ed.): The Handbook
of Brain Theory and Neural Networks. Oxford, United Kingdom: Pergamon Press 1992. ISBN: 978-
0080420127.

Lehmer 1957
Lehmer, D. H.: Combinatorial problems with digital computers. In: Proceedings of the Fourth Cana-
dian Mathematical Congress, pp. 160–173. 1957.

Liang & Paredis 2004
Liang, V.-C.; Paredis, C. J. J.: A Port Ontology for Conceptual Design of Systems. Journal of Com-
puting and Information Science in Engineering 4 (2004) 3, pp. 206–217. ISSN: 15309827.

Lin et al. 2009
Lin, Y.-s.; Shea, K.; Johnson, A. L.; Coultate, J.; Pears, J.: A Method and Software Tool for Auto-
mated Gearbox Synthesis. In: ASME 2009 International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference, IDETC/CIE 2009, pp. 111–121. San Diego,
USA 2009. ISBN: 978-0-7918-4902-6.

Lindemann et al. 2008
Lindemann, U.; Maurer, M.; Braun, T.: Structural Complexity Management: An Approach for the
Field of Product Design. Berlin: Springer 2008. ISBN: 3540878882.

146 8 References

Lindsay et al. 1993
Lindsay, R. K.; Buchanan, B. G.; Feigenbaum, E. A.; Lederberg, J.: DENDRAL: A case study of the
first expert system for scientific hypothesis formation. Artificial Intelligence 61 (1993) 2, pp. 209–261.
ISSN: 00043702.

Lucas 1891
Lucas, M. E.: Récréations Mathématiques. Paris, France: Gauthier-Villars 1891.

Luger 2005
Luger, G. F.: Artificial Intelligence: Structures and Strategies for Complex Problem Solving. 5th
edition, Harlow, England: Addison Wesley 2005. ISBN: 978-0-1320-900-18.

Mackworth 1977
Mackworth, A. K.: Consistency in networks of relations. Artificial Intelligence 8 (1977) 1, pp. 99–118.
ISSN: 00043702.

Maher et al. 1995
Maher, M. L.; Balachandran, M. B.; Zhang, D. M.: Case-Based Reasoning in Design. Mahwah, NJ,
USA: Lawrence Erlbaum Associates 1995. ISBN: 978-0805818321.

Mao et al. 2008
Mao, M.; Peng, Y.; Spring, M.: Neural Network based Constraint Satisfaction in Ontology Mapping.
In: Fox, D.; Gomes, C. P. (Eds.): Twenty-Third AAAI Conference on Artificial Intelligence, pp.
1207–1212. AAAI Press 2008. ISBN: 9781577353683.

McGuinness 2010
McGuinness, D. L.: Configuration. In: Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
Patel-Schneider, P. F. (Eds.): The Description Logic Handbook, chap. 12, pp. 417–435. Cambridge,
UK: Cambridge University Press 2010, 2nd edition.

McKay et al. 2012
McKay, A.; Chase, S.; Shea, K.; Chau, H. H.: Spatial grammar implementation: From theory to use-
able software. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 26 (2012)
02, pp. 143–159. ISSN: 0890-0604.

Meyer 1997
Meyer, B.: Object-oriented software construction, vol. 352. 2nd edition, Englewood Cliffs, NJ, USA:
Prentice Hall International 1997. ISBN: 0136291554.

Minsky 1975
Minsky, M. L.: A Framework for Representing Knowledge. In: Winston, P. H. (Ed.): Psychology of
Computer Vision, pp. 211–277. New York, NY, USA: McGraw-Hill 1975. ISBN: 978-0070710481.

Mittal & Frayman 1989
Mittal, S.; Frayman, F.: Towards a generic model of configuration tasks. In: Eleventh International
Joint Conference on Artificial Intelligence, IJCAI-89, vol. 2, pp. 1395–1401. San Mateo, CA, USA:
Morgan Kaufmann 1989. ISBN: 978-1558600942.

Montanari 1974
Montanari, U.: Networks of constraints: Fundamental properties and applications to picture process-
ing. Information Sciences 7 (1974), pp. 95–132. ISSN: 00200255.

147

Muller 2007
Muller, G.: A multidisciplinary research approach, illustrated by the Boderc project, project website:
http://www.gaudisite.nl (accessed on May 5, 2012), 2007.

Münzer 2010a
Münzer, C.: Fulfillment of requirements based on graph-grammars and constraint solving. Unpub-
lished semester thesis (SA2579), Institute for Product Development, Technische Universität München,
2010.

Münzer 2010b
Münzer, C.: Integration modellbasierter und regelbasierter Wissensformalisierung. Unpublished
diploma thesis (DA1194), Institute for Product Development, Technische Universität München, 2010.

Münzer et al. 2012
Münzer, C.; Shea, K.; Helms, B.: Automated Parametric Design Synthesis Using Graph Grammars
and Constraint Solving. In: ASME 2012 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, IDETC/CIE 2012. Chicago, USA 2012.

Nardi & Brachman 2010
Nardi, D.; Brachman, R. J.: An Introduction to Description Logics. In: Baader, F.; Calvanese, D.;
McGuinness, D. L.; Nardi, D.; Patel-Schneider, P. F. (Eds.): The Description Logic Handbook, chap. 1,
pp. 1–40. Cambridge, UK: Cambridge University Press 2010. ISBN: 0521781760.

Neema et al. 2005
Neema, S.; Gray, J.; Picone, J.; Porandla, S.; Musunuri, S.; Mathews, J.: Hybrid Powertrain De-
sign Using a Domain-Specific Modeling Environment. In: 2005 IEEE Vehicle Power and Propulsion
Conference, pp. 6–12. Chicago, USA 2005. ISBN: 0-7803-9280-9.

ObjectManagement Group 2007
Object Management Group: Unified Modeling Language: Infrastructure (2007), p. 230.

Pahl et al. 2007
Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Engineering Design: A Systematic Approach. 3rd
edition, London, United Kingdom: Springer 2007. ISBN: 1846283183.

Paredis et al. 2001
Paredis, C. J. J.; Diaz-Calderon, A.; Sinha, R.; Khosla, P. K.: Composable Models for Simulation-
Based Design. Engineering with Computers 17 (2001) 2, pp. 112–128. ISSN: 0177-0667.

Parr 2007
Parr, T.: The Definitive ANTLR Reference. Raleigh, North Carolina: Pragmatic Bookshelf 2007.
ISBN: 978-0978739256.

Partridge 1987
Partridge, D.: The scope and limitations of first generation expert systems. Future Generation Com-
puter Systems 3 (1987) 1, pp. 1–10. ISSN: 0167739X.

Patel & Campbell 2010
Patel, J.; Campbell, M. I.: An Approach to Automate and Optimize Concept Generation of Sheet
Metal Parts by Topological and Parametric Decoupling. Journal of Mechanical Design 132 (2010) 5,
p. 051001. ISSN: 10500472.

148 8 References

Patel-Schneider & Swartout 1993
Patel-Schneider, P. F.; Swartout, B.: Description-Logic Knowledge Representation System Specifica-
tion from the KRSS Group of the ARPA Knowledge Sharing Effort. Syntax And Semantics (1993),
pp. 1–19.

Paynter 1961
Paynter, H. A.: Analysis and Design of Engineering Systems. Cambridge, MA, USA: MIT Press
1961. ISBN: 0262160048.

Ponn & Lindemann 2011
Ponn, J.; Lindemann, U.: Konzeptentwicklung und Gestaltung technischer Produkte. 2nd edition,
Berlin, Germany: Springer 2011. ISBN: 978-3642205798.

Puppe 1990
Puppe, F.: Problemlösungsmethoden in Expertensystemen. Studienreihe Informatik, Berlin, Germany:
Springer 1990. ISBN: 3540532315.

Rector & Nowlan 1994
Rector, A.; Nowlan, W. A.: The galen project. Computer Methods and Programs in Biomedicine 45
(1994) 1-2, pp. 75–78. ISSN: 01692607.

Reddy & Cagan 1995
Reddy, G.; Cagan, J.: An Improved Shape Annealing Algorithm for Truss Topology Generation.
Journal of Mechanical Design 117 (1995) 2, pp. 315–321. ISSN: 10500472.

Reenskaug 1979
Reenskaug, T.: Models - Views - Controllers. Tech. Rep., Xerox PARC, 1979.

Rihtaršič et al. 2010
Rihtaršič, J.; Žavbi, R.; Duhovnik, J.: SOPHY - Tool for Structural Synthesis of Conceptual Techni-
cal Systems. In: 11th International Design Conference, DESIGN 2010, pp. 1391–1398. Dubrovnik,
Croatia 2010.

Rosenberg & Karnopp 1983
Rosenberg, R. C.; Karnopp, D. C.: Introduction to Physical System Dynamics. New York, NY, USA:
McGraw Hill 1983. ISBN: 0070539057.

Roth 2001
Roth, K.: Konstruieren mit Konstruktionskatalogen II - Konstruktionskataloge. 3rd edition, Berlin,
Germany: Springer 2001. ISBN: 3-540-67026-2.

Rozenblit & Hu 1992
Rozenblit, J. W.; Hu, J.: Integrated knowledge representation and management in simulation-based
design generation. Mathematics and Computers in Simulation 34 (1992) 3-4, pp. 261–282. ISSN:
03784754.

Rude 1998
Rude, S.: Wissensbasiertes Konstruieren. Habilitation, Universität Karlsruhe (TH), 1998. Aachen,
Germany: Shaker 1998.

149

Russell & Norvig 2003
Russell, S. J.; Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edition, Upper Saddle
River: Pearson Education 2003. ISBN: 0-13-790395-2.

Sabin & Weigel 1998
Sabin, D.; Weigel, R.: Product Configuration Frameworks-A Survey. IEEE Intelligent Systems 13
(1998) 4. ISSN: 1541-1672.

Schäfer & Rudolph 2005
Schäfer, J.; Rudolph, S.: Satellite design by design grammars. Aerospace Science and Technology 9
(2005) 1, pp. 81–91. ISSN: 12709638.

Schmidt & Cagan 1998
Schmidt, L. C.; Cagan, J.: Optimal Configuration Design: An Integrated Approach Using Grammars.
Journal of Mechanical Design 120 (1998) 1, pp. 2–9. ISSN: 10500472.

Schmidt et al. 2000
Schmidt, L. C.; Shetty, H.; Chase, S. C.: A Graph Grammar Approach for Structure Synthesis of
Mechanisms. Journal of Mechanical Design 122 (2000) 4, pp. 371–376.

Shea 1997
Shea, K.: Essays of Discrete Structures: Purposeful Design of Grammatical Structures by Directed
Stochastic Search. Dissertation, Carnegie Mellon University, 1997.

Shea et al. 2005
Shea, K.; Aish, R.; Gourtovaia, M.: Towards integrated performance-driven generative design tools.
Automation in Construction 14 (2005) 2, pp. 253–264. ISSN: 09265805.

Shea & Starling 2003
Shea, K.; Starling, A. C.: From Discrete Structures to Mechanical Systems: A Framework for Creating
Performance-Based Parametric Synthesis Tools. In: AAAI 2003 Spring Symposium. Palo Alto, USA
2003.

Shortliffe et al. 1975
Shortliffe, E. H.; Davisa, R.; Axlinea, S. G.; Buchanan, B. G.; Greena, C. C.; Cohena, S. N.:
Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of
the MYCIN system. Computers and Biomedical Research 8 (1975) 4, pp. 303–320. ISSN: 00104809.

Simon 1996
Simon, H. A.: The Sciences of the Artificial. 3rd edition, Cambridge, MA, USA: The MIT Press 1996.
ISBN: 9-780-262193740.

Spath 2001
Spath, D.: Vom Markt zum Produkt - Impulse für die Innovationen von morgen. Stuttgart: LOG_X
Verlag 2001. ISBN: 3932298187.

Sridharan & Campbell 2004
Sridharan, P.; Campbell, M. I.: A Grammar for Function Structures. Proceedings Of The Asme Design
Engineering Technical Conference 2004 (2004) 46962a, pp. 41–55.

150 8 References

Sriram 1997
Sriram, R. D.: Intelligent Systems for Engineering. London: Springer 1997. ISBN: 3540761284.

Stankovic 2011
Stankovic, T.: Grammatical evolution of technical processes. Dissertation, Faculty of Mechanical
Engineering and Naval Architecture, University of Zagreb, 2011.

Stankovic et al. 2009
Stankovic, T.; Shea, K.; Storga, M.; Marjanovic, D.: Grammatical Evolution of Technical Processes.
In: ASME 2009 International Design Engineering Technical Conferences & Computers and Informa-
tion in Engineering Conference, IDETC/CIE 2009, pp. 895–904. San Diego, USA: ASME 2009.

Starling & Shea 2005
Starling, A. C.; Shea, K.: A parallel grammar for simulation-driven mechanical design synthesis. In:
ASME 2005 International Design Engineering Technical Conferences & Computers and Information
in Engineering Conference, IDETC/CIE 2005. Long Beach, USA 2005.

Stiny & Mitchell 1978
Stiny, G.; Mitchell, W. J.: The Palladian grammar. Environment and Planning B 5 (1978) 1, pp. 5–18.
ISSN: 02658135.

Stokes & MOKA Consortium 2001
Stokes, M.; MOKA Consortium: Managing Engineering Knowledge: MOKA - Methodology for
Knowledge Based Engineering Applications. London, United Kingdom: Professional Engineering
Publication 2001. ISBN: 978-1860582950.

Stone & Wood 2000
Stone, R. B.; Wood, K. L.: Development of a functional basis for design. Journal of Mechanical
Design 122 (2000) December, p. 359.

Stone et al. 2000
Stone, R. B.; Wood, K. L.; Crawford, R. H.: A heuristic method for identifying modules for product
architectures. Design Studies 21 (2000) 1, pp. 5–31. ISSN: 0142694X.

Struss & Price 2003
Struss, P.; Price, C.: Model-Based Systems in the Automotive Industry. AI Magazine 24 (2003) 4, pp.
17–34. ISSN: 07384602.

Stubblefield & Luger 1996
Stubblefield, W. A.; Luger, G. F.: Source selection for analogical reasoning an empirical approach. In:
AAAI’96 Proceedings of the thirteenth national conference on Artificial intelligence - Volume 1, pp.
696–702. AAAI Press 1996. ISBN: 0-262-51091-X.

Sussman & Steele 1980
Sussman, G. J.; Steele, G. L. J.: A Language for Expressing Almost-Hierarchical Descriptions. Arti-
ficial Intelligence 14 (1980) 1, pp. 1–39.

Szykman et al. 2000
Szykman, S.; Racz, J.; Bochenek, C.; Sriram, R. D.: A web-based system for design artifact modeling.
Design Studies 21 (2000) 2, pp. 145–165. ISSN: 0142694X.

151

Tomiyama et al. 1989
Tomiyama, T.; Kiriyama, T.; Takeda, H.; Xue, D.; Yoshikawa, H.: Metamodel: A key to intelligent
CAD systems. Research in Engineering Design 1 (1989) 1, pp. 19–34. ISSN: 0934-9839.

Tsang 1993
Tsang, E.: Foundations of Constraint Satisfaction (Computation in Cognitive Science). London,
United Kingdom: Academic Press 1993. ISBN: 0127016104.

Ulrich 1995
Ulrich, K.: The role of product architecture in the manufacturing firm. Research Policy 24 (1995) 3,
pp. 419–440. ISSN: 00487333.

Ulrich & Eppinger 2008
Ulrich, K.; Eppinger, S. D.: Product Design and Development. 4th edition, New York, NY, USA:
McGraw Hill 2008. ISBN: 978-007-125947-7.

Umeda & Tomiyama 1995
Umeda, Y.; Tomiyama, T.: FBS modeling: Modeling scheme of function for conceptual design. In:
9th International Workshop on Qualitative Reasoning, pp. 271–278. 1995.

VDI 1987
VDI: Systematic approach to the development and design of technical systems and products (2221),
1987.

VDI 2005
VDI: Classification and evaluation of description methods in automation and control technology
(3681), 2005.

Žavbi & Rihtaršič 2009
Žavbi, R.; Rihtaršič, J.: Synthesis of elementary product concepts based on knowledge twisting. Re-
search in Engineering Design 21 (2009) 2, pp. 69–85. ISSN: 0934-9839.

Welch & Dixon 1994
Welch, R. V.; Dixon, J. R.: Guiding conceptual design through behavioral reasoning. Research in
Engineering Design 6 (1994) 3, pp. 169–188. ISSN: 0934-9839.

Whitney 1996
Whitney, D. E.: Why mechanical design cannot be like VLSI design. Research in Engineering Design
8 (1996) 3, pp. 125–138. ISSN: 0934-9839.

Wilkes 1964
Wilkes, M. V.: Constraint-type statements in programming languages. Communications of the ACM
7 (1964) 10, pp. 587–588. ISSN: 00010782.

Wölkl & Shea 2009
Wölkl, S.; Shea, K.: A Computational Product Model for Conceptual Design Using SysML. In:
ASME 2009 International Design Engineering Technical Conferences & Computers and Information
in Engineering Conference, IDETC/CIE 2009. San Diego, USA 2009.

152 8 References

Wu et al. 2008
Wu, Z.; Campbell, M. I.; Fernandez, B. R.: Bond Graph Based Automated Modeling for Computer-
Aided Design of Dynamic Systems. Journal of Mechanical Design 130 (2008) 4, pp. 041102–1 –
041102–11. ISSN: 10500472.

Wyatt et al. 2012
Wyatt, D. F.; Wynn, D. C.; Jarrett, J. P.; Clarkson, P. J.: Supporting product architecture design using
computational design synthesis with network structure constraints. Research in Engineering Design
23 (2012) 1, pp. 17–52. ISSN: 0934-9839.

Wynn et al. 2010
Wynn, D. C.; Wyatt, D. F.; Nair, S. M. T.; Clarkson, P. J.: An Introduction to the Cambridge Advanced
Modeller. In: International Conference on Modelling and Management Engineering, July, pp. 19–20.
Springer 2010. ISBN: 1849961980.

Yaner & Goel 2007
Yaner, P.; Goel, A.: Understanding drawings by compositional analogy. In: International Joint Con-
ference on Artificial Intelligence, IJCAI-2007, pp. 1131–1137. Hyderabad 2007.

Yoshioka et al. 2004
Yoshioka, M.; Umeda, Y.; Takeda, H.; Shimomurad, Y.; Nomaguchi, Y.; Tomiyama, T.: Physical con-
cept ontology for the knowledge intensive engineering framework. Advanced Engineering Informatics
18 (2004) 2, pp. 95–113. ISSN: 14740346.

Young 2003
Young, R. R.: The Requirements Engineering Handbook. Norwood, MA, USA: Artech House 2003.
ISBN: 1-58053-266-7.

9 Appendix

9.1 Illustrative example for constraint-based representations

In the following, the application of the theoretical foundation of CSPs for modeling constraints is illus-
trated using a simplified automotive gearbox as an example50, illustrated in Figure 9-1. The 6-speed
gearbox and the other elements are characterized by the tuple of variables X. The algorithm for solving
the CSP aims to assign values to the variables xi with respect to the tuple D defining the valid value
ranges. The variable i51 contains a list of the six transmission ratios, a reasonable value range is be-
tween 0.8 and 5. The gears can either be spur gears or helical gears; this is modeled with the variable
type. The physically meaningful range of the efficiency is between 0 and 1. In the context of automotive
powertrains, the input of a gearbox can be either linked to a clutch or to the motor (variable input). To
prevent confusion and facilitate implementation, variables are attached to the components using a dot
".", e. g. the gearbox’ efficiency is represented as gbox.efficiency. Gelle & Faltings (2003) differentiate
three types of constraints:

DX

6-Speed Gearbox

(gbox)

i[1..6] : [0.8, 5]

type : {“spur gears“,

“helical gears“}

efficiency : [0, 1]

input : {“cl“, “ice“, “ele“}

supplier : {“ZF“, “Getrag“}

output : {“cl“}

… : ...

Internal combustion

engine (ice)

input : {“tank“}

… : ...

output : {“gbox“, “cl“}

Electrical engine

(ele)

input : {“battery“}

… : ...

output : {“gbox“, “cl“}

Clutch (cl)

input : {“gbox“, “ice“,

“ele“}

… : ...

output : {“gbox“}

Figure 9-1: Constrained-based representation of components for a hybrid automotive powertrain

∙ Numeric constraints represent mathematical relations as equations or inequalities and only relate
to numeric variables, such as the transmission ratios in i. Usually, transmission ratios are defined
in descending order. These relations can be represented as five numeric inequality constraints:

c1 = gbox.i[1] > gbox.i[2] (9.1)
... (9.2)

c5 = gbox.i[5] > gbox.i[6] (9.3)

50This example is adapted and extended from the semester thesis of Münzer (2010a))
51The letter i is typically used in the engineering domain as variable for transmission ratios and is not to be confused with the

control variable i used as index, such as in xi.

154 9 Appendix

∙ Discrete constraints only apply to discrete variables such as gbox.type, gbox.supplier or gbox.input.
In this example discrete constraints define relations between distinct values of discrete variables.
The gearbox’ type and the supplier directly depend on each other:

c6(gbox.supplier, gbox.type) = (”ZF”, ”planetary gear”), (”Getrag”, ”spur gear”) (9.4)

∙ Mixed constraints involve the use of both – numeric and discrete – variable types. For example
here, mixed constraints represent the dependency of the gearbox’ efficiency and gear type:

c7(gbox.type, gbox.e f f iciency) = (”planetary gear”, 0.95), (”spur gear”, 0.98) (9.5)

The constraints c1 . . . c7 represent only parametric relations of the modeled components. In the scope
of this thesis, these constraints are termed parametric constraints. Contrarily, topological constraints
represent topological relations between components. Rozenblit & Hu (1992) use the term coupling con-
straints and state that they "impose a manner in which components [. . .] can be connected together"52.
For example, the gearbox’ input can be connected to the output of the clutch (cl), the internal combus-
tion engine (ice) or electrical engine (ele); they all have compatible mechanical rotational interfaces. The
compatibility of the components can be represented with discrete constraints. To achieve this, the con-
straint c8 is defined relating the input variable of the gearbox gbox.input to all potential output variables
using an OR-operator, represented by the symbol ∨. If two components are connected, their input- (or
output-)variables contain the name of the allocated component.

c8(gbox.input, ele.output ∨ cl.output ∨ ice.output) =

(”ele”, ”gbox”), (”cl”, ”gbox”), (”ice”, ”gbox”) (9.6)

For every component with an input a topological constraint has to be defined that represents the compat-
ibility of that component with all potential outputs. Consequently, the number of constraints and number
of interrelated variables within the constraints increases significantly with an increase of compatibility
and a larger number of elements. Depending on the degree of compatibility, this representation can
become convoluted.

The concept of ports that is introduced in more detail in Section 3.3.1 provides a clearer representation
of topological constraints. Instead of defining the individual input-output-compatibility of every compo-
nent, ports represent classes of compatibility, i. e. interfaces. The significance and suitability of ports in
conceptual design has been described by Liang & Paredis (2004): "The port connections represent in-
teractions consisting of the exchange of energy, matter or signals [. . .]. Representing design alternatives
as configurations of port-based objects is useful at the conceptual design stage when the geometry and
spatial layout is still ill-defined." Figure 9-2 depicts the representation of topological constraints based
on ports. First, ports have to be defined; three types of energy flow ports are required: mechanical ro-
tational, chemical and electrical. Second, ports can be assigned to the components and represent their
compatibility. Thirdly, based on this representation the set of valid system architectures can be derived.
In this example, four valid powertrain configurations are depicted.

52Other common terms are structural constraints or network structure constraints such as used in (Wyatt et al., 2012)

9.1 Illustrative example for constraint-based representations 155

2. Definition of components1. Definition of ports

3. Derivation of valid configurations

gboxR R ice R

Rele clR R

ice R clR R gboxR R

ice R gboxR R clR R

clR R gboxR R

gboxR R clR R

ele R

ele R

R Mechanical rotational

Electrical

Chemical

Figure 9-2: Port-based representation of topological constraints of components for a hybrid automotive
powertrain

156 9 Appendix

9.2 Illustrative example for description logics

In the following, the domain of road vehicles is used as an example. The syntax and terminology of
the abstract language by Nardi & Brachman (2010) is used. The initial step of building a DL-based
knowledge base is to declare atomic concepts and atomic roles. They can be seen as the fundamental
building blocks providing the foundation for the definition of new concepts. For that purpose, logical
operators, termed symbols, are available. One fundamental symbol is the intersection of concepts (⊓)
that is used to restrict the regarded set of concepts and their individuals. For example, the declaration of
the concept Car (using the equivalence operator ≡) can be seen as the intersection of the atomic concepts
RoadVehicle and FourWheeled:

Car ≡ RoadVehicle ⊓ FourWheeled (9.7)

Roles provide for the restriction of concepts and the definition of new concepts as they characterize the re-
lationships among concepts. Using the operator for an existential quantification (∃) the role usesEnergy
can be defined. It allows, by that, to link the atomic concept Electric to the concept of RoadVehicle and
to define the new concept ElectricVehicle. Hence, the existence of any individual of ElectricVehicle
requires this relationship to be fulfilled.

ElectricVehicle ≡ RoadVehicle ⊓ ∃usesEnergy.Electric (9.8)

While the concept FourWheeled contains all subconcepts having four wheels – this might also include
train wagons with four wheels – cars should have tires as wheels. For that purpose, the definition of the
concept Car in equation (9.7) can be extended by an intersection with the set of concepts that fulfill the
role hasWheels.Tire. This role establishes a relation between the concepts Tire and Car:

Car ≡ (RoadVehicle ⊓ FourWheeled) ⊓ ∃hasWheels.Tire (9.9)

Based on the concepts Car and ElectricVehicle the concept of ElectricCar is defined as their intersec-
tion:

ElectricCar ≡ Car ⊓ ElectricVehicle (9.10)

Through the previous definitions the terminology, i. e. the TBox, of this exemplary domain of interest is
set. In contrast, the ABox contains assertions about individuals of these concepts. For example,

ElectricCar(Mitsubishi_i − MiEV) (9.11)

states that the individual Mitsubishi_i − MiEV is an electric car. As ElectricVehicle is derived from the
intersection of the concepts Car and ElectricVehicle, the role

hasWheels.Tire(Mitsubishi_i − MiEV, BridgeS tone175/55_R15) (9.12)

9.2 Illustrative example for description logics 157

can be applied and relates one specific Tire individual described as BridgeS tone175/55_R15, to one
specific individual described as ElectricVehicle. Assertions of the former kind are termed concept as-
sertions; the latter are called role assertions.

To conclude, the combination of TBox and ABox provides a formal representation for defining concepts,
categories of concepts, their relationships and instances. Based on this representation, reasoning tasks
can be accomplished. One important and commonly applied reasoning problem is to "determine whether
a description is satisfiable" (Baader, 2010). This means that assertions in the ABox are checked against
the concept definitions in the TBox. Russell & Norvig (2003, p. 353) term this task "classification" and
mention another main task for description logics: "Subsumptions" check whether a concept can be a
subset of another through comparison of their definitions.

Subsumptions can be seen as "the basic reasoning service for the TBox" (Nardi & Brachman, 2010).
They are helpful to determine the meaningfulness and consistency of a knowledge base. For example, one
might want to ensure that any individual of the concept ElectricCar is contained in the set of individuals
of the concept Car. Hence, any electric car would be equipped automatically with four wheels. Through
comparison of the considered sets, reasoners are able to infer that the concept Car is subsumed by
ElectricCar, which can be expressed as:

ElectricCar ⊑ Car (9.13)

158 9 Appendix

9.3 Functional Basis

Table 9-1: Functional operators of the Functional Basis (Hirtz et al., 2002b)

mation, the power conjugate complements of effort and
flow can be used.

The reconciled function set in Table 5 has been
modified from having categories of class, basic, and
flow restricted (in the original functional basis) to class
(primary), secondary, tertiary, and Correspondents. The
column labeled as ‘‘Correspondents’’ is provided as an
aid for mapping from terms that are not in the rec-
onciled functional basis to terms that are. In other
words, the terms rigid-body, elastic-body or widget in
some other representation would all be mapped to the
term object in a representation built upon the recon-
ciled functional basis. The words contained within the
Correspondents category are merely a means of com-

parison and are not considered to be a fourth level of
terms in the reconciled functional basis. The italicized
words in Table 5 are repeated correspondents. For
example, allow is a correspondent for both the sec-
ondary functions import and regulate. The combined
function set now contains eight class (primary) cate-
gories with an expanded list of secondary categories
and the creation of new tertiary categories. The eight
secondary categories are branch, channel, connect,
control magnitude, convert, provision, signal, and
support. Clear definitions have been developed for all
flow and function categories (see Appendices A and B).
An illustrative example for each term is also included
for clarity.

Table 5. Functional basis reconciled function set

Class (Primary) Secondary Tertiary Correspondents

Branch Separate Isolate, sever, disjoin
Divide Detach, isolate, release, sort, split, disconnect, subtract
Extract Refine, filter, purify, percolate, strain, clear
Remove Cut, drill, lathe, polish, sand

Distribute Diffuse, dispel, disperse, dissipate, diverge, scatter
Channel Import Form entrance, allow, input, capture

Export Dispose, eject, emit, empty, remove, destroy, eliminate
Transfer Carry, deliver

Transport Advance, lift, move
Transmit Conduct, convey

Guide Direct, shift, steer, straighten, switch
Translate Move, relocate
Rotate Spin, turn
Allow DOF Constrain, unfasten, unlock

Connect Couple Associate, connect
Join Assemble, fasten
Link Attach

Mix Add, blend, coalesce, combine, pack
Control Actuate Enable, initiate, start, turn-on

Regulate Control, equalize, limit, maintain
Increase Allow, open
Decrease Close, delay, interrupt

Magnitude Change Adjust, modulate, clear, demodulate, invert, normalize, rectify, reset,
scale, vary, modify

Increment Amplify, enhance, magnify, multiply
Decrement Attenuate, dampen, reduce
Shape Compact, compress, crush, pierce, deform, form
Condition Prepare, adapt, treat

Stop End, halt, pause, interrupt, restrain
Prevent Disable, turn-off
Inhibit Shield, insulate, protect, resist

Convert Convert Condense, create, decode, differentiate, digitize, encode, evaporate,
generate, integrate, liquefy, process, solidify, transform

Provision Store Accumulate
Contain Capture, enclose
Collect Absorb, consume, fill, reserve

Supply Provide, replenish, retrieve
Signal Sense Feel, determine

Detect Discern, perceive, recognize
Measure Identify, locate

Indicate Announce, show, denote, record, register
Track Mark, time
Display Emit, expose, select

Process Compare, calculate, check
Support Stabilize Steady

Secure Constrain, hold, place, fix
Position Align, locate, orient

Overall increasing degree of specification from left to right

J. Hirtz et al.: A functional basis for engineering design

73

9.3 Functional Basis 159

Table 9-2: Functional flows of the Functional Basis (Hirtz et al., 2002b)

Table 4. Power conjugate complements for the energy class of flows

Class (Primary) Secondary Tertiary Power conjugate complements

Effort analogy Flow analogy

Energy Effort Flow
Human Force Velocity
Acoustic Pressure Particle velocity
Biological Pressure Volumetric flow
Chemical Affinity Reaction rate
Electrical Electromotive force Current
Electromagnetic Effort Flow

Optical Intensity Velocity
Solar Intensity Velocity

Hydraulic Pressure Volumetric flow
Magnetic Magnetomotive force Magnetic flux rate
Mechanical Effort Flow

Rotational Torque Angular velocity
Translational Force Linear velocity

Pneumatic Pressure Mass flow
Radioactive/Nuclear Intensity Decay rate
Thermal Temperature Heat flow

Table 3. Functional basis reconciled flow set

Class (Primary) Secondary Tertiary Correspondents

Material Human Hand, foot, head
Gas Homogeneous
Liquid Incompressible, compressible, homogeneous
Solid Object Rigid-body, elastic-body, widget

Particulate
Composite

Plasma
Mixture Gas–gas

Liquid–liquid
Solid–solid Aggregate
Solid–liquid
Liquid–gas
Solid–gas
Solid–liquid–gas
Colloidal Aerosol

Signal Status Auditory Tone, word
Olfactory
Tactile Temperature, pressure, roughness
Taste
Visual Position, displacement

Control Analog Oscillatory
Discrete Binary

Energy Human
Acoustic
Biological
Chemical
Electrical
Electromagnetic Optical

Solar
Hydraulic
Magnetic
Mechanical Rotational

Translational
Pneumatic
Radioactive/Nuclear
Thermal

Overall increasing degree of specification from left to right

Res Eng Design 13 (2002)

72

160 9 Appendix

9.4 Software architecture

9.4.1 Model

The entities introduced in Chapter 3, such as element type or port, are computationally represented within
booggie. This section gives a high-level overview of the most important entities that are implemented as
classes53 and introduces their properties. All of these classes can be found in the booggie source code
within the respective Python modules. The classes depicted in Figure 9-3 are crucially important for the
fundamental functionality of booggie.

PortType ElementType

Attribute

NodeType

MetaModel

Project

RuleSequence

PortElement

NodeEdge

Graph Rule

has type

has type

Figure 9-3: UML class diagram of the booggie classes

∙ Project represents a snapshot at run time of all instantiations of the following classes. It contains
the Metamodel as defined by the user, the Rules and RuleSequences and the Graphs.

∙ A Rule consists of two Graphs, the left-hand side and right-hand side, and a textual representation
of the rule code according to the applied rule language.

∙ A RuleSequence contains a string-based description of the concatenation of Rules according to the
applied rule sequence language.

∙ Graph is a collection of Elements and their respective Ports that are interconnected using Edges.
Graphs that are built on this class are termed in the following booggie graphs.

∙ The Metamodel is the collection of all ElementTypes and PortTypes and represents them in a
hierarchical way reflecting their hierarchy of inheritance.

∙ NodeType is an abstract class to describe nodes as general modeling elements of graphs. It en-
capsulates common functionality and is inherited by PortType and ElementType. Each type has a
unique identifier, e. g. its name, a parent type and a list of attributes.

∙ Port is an instantiation of a PortType. It inherits all attributes from its type but allows the modifi-
cation of attributes limiting the visibility of the changes to the scope of the instance.

∙ Element is, similarly to Port, an instantiation of an ElementType.

∙ Attributes are used to annotate ports and elements with additional information. Each attribute has
an identifier through which it can be accessed in graph transformation rules.

53Classes are typed with leading capital letter.

9.4 Software architecture 161

With the implementation of these classes, the required support of the knowledge formalization process
can be realized while remaining solution-independent, cf. SWReq 1.

9.4.2 View

The graphical user interface (GUI) builds on five perspectives that are part of the five individual software
components (see Figure 5-1). Thereby, each perspective maps to one working step of the knowledge
formalization process and aims to support the user to perform each task as demanded by SWReq 2. In
general, a perspective is composed of these three main constituents (see Figure 9-4):

∙ Docklets are reusable view components that can be freely arranged at the margin of each per-
spective. They are multi-purpose elements offering additional perspective-relevant information or
functionalities.

∙ Toolbars are displayed on the top of the window to provide shortcuts to often needed function-
ality that can be either required in all perspectives, e. g. saving a project, or be specific to one
perspective, e. g. interaction with graphs.

∙ Center Views are the main part of a perspective and contain the primary GUI elements needed for
the working steps. Additionally, a center view has to handle actions triggered by docklets. For
instance, an "open graph"-action triggered by a graph docklet leads to a graphical representation
of the selected graph in the center view.

DockletDocklet

Toolbar

Center

view

Figure 9-4: Ggeneral constituents of perspectives

162 9 Appendix

Perspectives can be customized according to the user preferences as docklets and toolbars can be placed
freely in the respective areas.

9.4.3 Controller

MVC separates the model from the views. If the model changes its state the views have to adapt to the
changed model to reflect the correct data. booggie contains a variety of controller components for han-
dling input and determining the result and relaying that information to the user via views. In this section,
two of these controller components are presented: the observer pattern as implemented in booggie and
the persistence controller allowing to save the runtime object to the file system.

The observer pattern provides a technique to synchronize the model with multiple views. The working
principle is illustrated with an example as depicted in Figure 9-5:

1. The user creates a metamodel and defines an ElementType "gearbox" that has the color white.

2. This ElementType is used to create a rule that adds another element to the gearbox as defined in the
right-hand side of the rule. To detect isolated gearbox elements, a left-hand side graph with only
one gearbox element is created in the graph perspective. This rule can be applied on a host graph
on which the left-hand side of the rule matches. Hence, multiple occurrences of this ElementType
can be identified in various graph visualizations instances.

3. The user changes the view color property of the "gearbox" in the metamodel to grey.

4. All visual representations of the element have to change accordingly.

Metamodel
perspective

gearbox.color = grey
gearbox.shape = cube

Metamodel
perspective

gearbox.color = white
gearbox.shape = cube

Rules perspective Graph visualization

gearbox

gearbox gearbox

clutch

rule add_clutch {
/* Created with Booggie Rule Editor */
N0:gearbox -E0:DJoint-> P0:mechanical; //OUT-Port
replace {
N1:clutch <-E1:DJoint- P1:mechanical; //IN-Port
N0 -E0-> P0; //OUT-Port }

}

Rules perspective Graph visualization

gearbox

gearbox gearbox

clutch

color changed to grey

rule add_clutch {
/* Created with Booggie Rule Editor */
N0:gearbox -E0:DJoint-> P0:mechanical; //OUT-Port
replace {
N1:clutch <-E1:DJoint- P1:mechanical; //IN-Port
N0 -E0-> P0; //OUT-Port }

}

Observers
Subjects

requests, modification

change notification

Figure 9-5: Example for the application of the observer pattern

In the case that the user changes the color of the gearbox, all perspectives that refer to this ElementType
should redraw their graphs. However, the decoupling of MVC implies that graphs and elements have
no dependencies between them and do not know about each other. The observer pattern describes a
mechanism to establish a communication between independent components. This pattern consists of a
subject and an observer. If the state of a subject changes, all observers get notified. Subsequently the
observer queries the subjects to synchronize its own state with the subject’s state. This interaction is
known as publish-subscribe. Thereby, the subject publishes all state changes using notifications to which
an observer might subscribe if its subject is affected by these changes (Gamma et al., 1995)

9.4 Software architecture 163

In booggie, the observer pattern is implemented using an Event class enabling each class to trigger an
Event or listen to Events fired by other classes. If a class subscribes to a certain Event it has to implement
the related method that is called if the Event is fired. Whenever a class publishes a notification by
triggering an Event, all listeners execute their associated methods.

Saving a booggie project file is handled by the persistence controller. This controller uses the Project
class to determine if changes to the project have been made and exports this data to a persistent storage.
booggie uses the eXtensible Markup Language (XML) to encode the entities defined by the user. Entities
are aggregated into groups (metamodel, rule set, rule sequences and graphs) and exported into single
files. These files are then archived into a ZIP file container to enable the exchange of a single file. ZIP
is chosen as a container as it is a widespread format supported by a wide range of libraries and can be
opened transparently by many operating systems. Encoding the data in XML offers two key benefits:

∙ Interoperability: Similarly to the ZIP format, XML is a widely used industry standard. A large
number of libraries and toolkits for handling XML encoded files are available. This enables any
project to import booggie project files if a XML parser is available. Further, the declarative lan-
guage XSLT (Extensible Stylesheet Language Transformations) can be used for transformation
between XML schemata, e. g. for supporting interoperability with other tools.

∙ Human readable: XML is a human readable file format which allows the user to edit the file
manually. Secondly, it supports the developer during test and debug processes because it simplifies
the location of mistakes.

9.4.4 Plugin architecture

booggie implements the plugin architecture that is defined in (Fowler, 2002). Similar implementations
of this pattern can be found in various other software projects like Eclipse or Firefox. This design pattern
allows the flexible extension of an application during runtime, cf. SWReq 13.

In general, this architecture consists of extension points and plugins that are using these extension points
to provide additional functionality. The plugins themselves can provide extension points based on which
other plugins can be developed. The functionality of extension points and how plugins can attach to them
are described in files that are located either in the respective plugin folder or in the core implementation.
Using these descriptions files and the source code of the plugins, the main application locates all plugins
and is then calling specific plugins at the defined point during the execution of the program.

Figure 9-6: Sequence for calling a plugin

The call of a plugin within this design pattern is explained with sequence diagram in Figure 9-6. The
actors and their roles in this diagram are:

164 9 Appendix

∙ Caller is an object of the main application that wants to use a functionality provided by a plugin
through accessing an extension point that must be defined in the PluginConfiguration.

∙ The PluginFactory possesses the information on the existence and the kind of all installed plugins.
It parses all plugin configurations at startup, then loads the concrete plugin implementations at
runtime and provides its functionality within booggie.

∙ The PluginConfiguration contains a description of the plugin and its extension points in the file
plugin.xml located in the plugin package.

∙ Plugin contains the concrete implementation of a plugin. For examples on how to implement
concrete plugins, refer to the booggieExamplePlugins folder located in the plugins folder.

This plugin architecture is not only used to extend booggie’s functionality but also to modularize the
core of booggie, i. e. the components as illustrated in Figure 5-1. This means that the entire software
is built around a core that is extended either by standard plugins that are mandatory for assuring the
key functionality or by optional plugins. All plugins have to be implemented according to the MVC
convention. Same as in engineering design processes (cf. Section 2.2), this division of the entire system
into subsystems allows parallelizing the development efforts to some extent.

Based on this architecture, several plugins were successfully developed. For example, a Matlab plugin
allows to control Matlab out of booggie and to include thereby advanced calculations in the synthesis
approach. Another plugin was developed, as a first proof of concept, to trigger in scripts the execution
of simulations in Modelica using the Modelica solver JModelica54.

54Project website: http://www.jmodelica.org

9.5 Notation for the definition of the booggie modeling language (bgML) 165

9.5 Notation for the definition of the booggie modeling language
(bgML)

Table 9-3: Overview over the used sets and functions for the definition of bgML
G Typed and attributed multigraph
N Set of nodes
E Set of edges
IN Graph describing the inheritance hierarchy of nodes types
IE Graph describing the inheritance hierarchy of edges types
AN Set of attributes of nodes
AE Set of attributes of edges
NEl Set of elements
NP Set of ports
attr Function for assigning an attribute to an element or a port
D Set of the direction values a port can have {in, out, undirected}
element Function returning the element a port belongs to
s Function returning the port at the source of an edge
t Function returning the port at the target of an edge
dir Function returning the direction of a port
type Function returning the type of a node or an edge from IN or IE

clan Function returning all ancestors of a node or an edge type
Gbg booggie graph

166 9 Appendix

9.6 Final assessment of the cabin configurator project by EADS

9.6 Final assessment of the cabin configurator project by EADS 167

168 9 Appendix

Index

ABox, 35
abstraction, 17
aggregation, 30
ASP, see assist space
assist space (ASP), 113
Attribute (implemented class), 160

Behavior (level of abstraction), 19, 23, 53
bgML, see booggie modeling language
booggie, 93

modeling language (bgML), 102

C, see capacitor
cabin attendant seat (CAS), 112
CAM, 45
capacitor, 80
cardinality, 30
CAS, see cabin attendant seat
case, 37
case-based

knowledge representation, 26
reasoning, 37

CBR, see case-based reasoning
CDS, see Computational Design Synthesis
center view, 161
class, 31
CLAVIER, 38
compatibility, 56
component, 24
Computational Design Synthesis, 3, 13
concept, 35
Concept Generator, 44
conceptual design (design phase), 2
concretization, 17
conflict set, 28
constraint, 32

coupling constraint, 34, 154
discrete constraint, 154
mixed constraint, 154
numeric constraint, 153
parametric constraint, 34, 154
satisfaction problem, 32

topological constraint, 34, 154
Controller (according to MVC), 101, 162
CSP, see constraint satisfaction problem
customer need, 1

decomposition, 16
deep system, 50
DENDRAL, 27
description logics, 35
design, 13

conceptual design (design phase), 2
detail design (design phase), 2
embodiment design (design phase), 2
language, 55
representation, 25
structure matrix (DSM), 44

Design Compiler 43, 43
detail design, 2
DG, see galley, dry
DL, see description logics
DMM, see domain mapping matrix
docklet, 161
domain mapping matrix (DMM), 44
domain-specific language (DSL), 22, 42, 49, 102
door compartment zone, 112
DSL, see domain-specific language
DSM, see design structure matrix

ease of use, 56
effectiveness, 4

of knowledge representation, 8
efficiency, 4, 56

of knowledge representation, 7
eifForm, 40
element, 57
Element (implemented class), 160
embodiment design (design phase), 2
engineering design, 1, 13
evaluation, 14, 15
expert system, 27, 39

first generation, 27
second generation, 39

170 INDEX

extendibility, 56

FBS, 19, 53
FBS*, 53
FFREADA, 43
formal engineering design synthesis, 4, 13
formal model, 3
frame, 29
function, 19

flow, 19
harmful function, 21
high-level function, 53
operator, 19
overall function, 20, 53
subfunction, 53
useful function, 21

Function (level of abstraction), 19, 53
functional

flow, 19
modeling

flow-oriented, 20
relation-oriented, 21

operator, 19

galley
dry (DG), 112
wet (WG), 112

generalization, 30
generation, 14, 15
grammar, 28
granularity, 17
graph

booggie graph, 160
grammar, 55

object-oriented, 9, 55
host graph, 28
model language, 107

Graph (implemented class), 160
graphical user interface, 161
GraphSynth, 42
GrGen.NET, 107
guidance, 14, 15
GY, see gyrator
gyrator, 81

hierarchy

is-a-hierarchy, 30
of aggregation, 30
of inheritance, 30
part-of-hierarchy, 30

hybrid knowledge representation, 39

I, see inertia
individual, 35
inductance, 81
inertia, 81
inference engine, 28
instance, 30
integrated knowledge representation, 39
investigation, 14

KIEF, 45
knowledge representation

case-based knowledge representation, 26
effectiveness, 8
efficiency, 7
hybrid knowledge representation, 39
integrated knowledge representation, 39
model-based knowledge representation, 26
rule-based knowledge representation, 26

KRITIK, 38

LAV, 112
lavatory, 112
left-hand side, 27
legroom, 113
level

of abstraction, 17
of granularity, 17

logical item, 112

mediation, 14, 15
metamodel, 25, 31, 57, 95
Metamodel (implemented class), 160
model, 25

product model, 25
Model (according to MVC), 100, 160
model transformation, 49
model-based knowledge representation, 26
Model-View-Controller (MVC), 100, 160
multiplicity, 30
MVC, see Model-View-Controller
MYCIN, 27

INDEX 171

NodeType (implemented class), 160

object-oriented graph grammar, 9, 55
observer, 162
ontology, 35
overall function, 20

partial passageway, 113
passenger compartment zone, 112
passenger seat (PAX), 112
PAX, see passenger seat
perspective, 93
physical

effect, 23
item, 112

pitch, 113
port, 34, 57, 154

abstraction port, 78
flow port, 58

Port (implemented class), 160
PPW, 113
preliminary layout, 2
principle solution, 2
product

architecture, 7, 25
development, 1
model, 25

production system, 27
Project (implemented class), 160

R, see resistor
recline, 113
representation, 14
resistor, 80
return values, 59
Reusability, 56
right-hand side, 27
role, 35
rule, 26

-based knowledge representation, 26
graph transformation rule, 94
application control language, 107
constraints, 59
of inference, 26
parameters, 59
production rule, 26

sequence, 62
set, 27
set language, 107

Rule (implemented class), 160
RuleSequence (implemented class), 160

script, 94
service ratio, 113
situation, 26
slot, 30
SOPHY, 45
specialization, 30
Structure, 24
Structure (level of abstraction), 19, 54
subject, 162
surface system, 50

task clarification (design phase), 1
TBox, 35
technical process, 19
terminal, see slot
TF, see transformer
toolbar, 161
transformer, 81
trolley, 112
Tulip, 65
type, 31

sub-, 31
super-, 31

unused space, 113

View (according to MVC), 101, 161

WG, see galley, wet
widget, 106
working

memory, 28
principle, 23

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation and problem description
	1.2 Objectives and expected contributions
	1.3 Thesis structure

	2 Computational design synthesis for supporting conceptual design
	2.1 The importance of representation for CDS
	2.2 Overview of design representations
	2.2.1 Function
	2.2.2 Behavior
	2.2.3 Structure
	2.2.4 Reflections on design representations

	2.3 Overview of knowledge representations
	2.3.1 Rule-based knowledge representation
	2.3.2 Model-based knowledge representations
	2.3.3 Case-based knowledge representation
	2.3.4 Reflections on knowledge representations

	2.4 Related work
	2.4.1 Rule-based CDS approaches
	2.4.2 Model-based CDS approaches

	2.5 Conclusions

	3 Synthesis of product architectures using object-oriented graph grammars
	3.1 Design representation: Function-Behavior-Structure
	3.2 Knowledge representation: Object-oriented graph grammars
	3.2.1 Grammar definition
	3.2.2 Grammar application

	3.3 Validation: Synthesis of hybrid powertrains
	3.3.1 Grammar definition
	3.3.2 Grammar application and discussion of the synthesis results

	3.4 Discussion

	4 Automated allocation of physical effects to functions using abstraction ports
	4.1 Method context
	4.2 Bond graph elements – the foundation for abstraction port types
	4.3 Assignment of abstraction ports to functions
	4.4 Assignment of abstraction ports to physical effects
	4.4.1 General approach
	4.4.2 Special case 1: Modulated elements
	4.4.3 Special case 2: Combined elements

	4.5 Validation: Formalization of design catalogs
	4.5.1 Assignment of physical effects to bond graph elements
	4.5.2 Search for suitable physical effects for allocation to functions

	4.6 Discussion

	5 Development of the software prototype booggie
	5.1 Software requirements
	5.1.1 Functional requirements
	5.1.2 Non-functional requirements

	5.2 Formal definition of the booggie modeling language (bgML)
	5.2.1 booggie graph (M1)
	5.2.2 booggie metamodel (M2)
	5.2.3 booggie metamodel specification (M3)

	5.3 Software architecture
	5.4 Implementation of selected (sub-)components
	5.4.1 Metamodel perspective
	5.4.2 Rules perspective
	5.4.3 Rule Sequences perspective
	5.4.4 Graph visualization
	5.4.5 Graph Transformation perspective

	5.5 Validation: Synthesis of aircraft cabin layouts
	5.5.1 Structure of aircraft cabins and definition of the metamodel
	5.5.2 Definition of rules, scipts and the rule sequence
	5.5.3 Grammar application and discussion of the synthesis results

	5.6 Discussion

	6 Discussion and future work
	6.1 Research contributions
	6.2 Future work

	7 Conclusion
	8 References
	9 Appendix
	9.1 Illustrative example for constraint-based representations
	9.2 Illustrative example for description logics
	9.3 Functional Basis
	9.4 Software architecture
	9.4.1 Model
	9.4.2 View
	9.4.3 Controller
	9.4.4 Plugin architecture

	9.5 Notation for the definition of the booggie modeling language (bgML)
	9.6 Final assessment of the cabin configurator project by EADS

	Index

